Machine learning for non‐invasive sensing of hypoglycaemia while driving in people with diabetes
dc.contributor.author
Lehmann, Vera
dc.contributor.author
Zueger, Thomas
dc.contributor.author
Maritsch, Martin
dc.contributor.author
Kraus, Mathias
dc.contributor.author
Albrecht, Caroline
dc.contributor.author
Bérubé, Caterina
dc.contributor.author
Feuerriegel, Stefan
dc.contributor.author
Wortmann, Felix
dc.contributor.author
Kowatsch, Tobias
dc.contributor.author
Styger, Naïma
dc.contributor.author
Lagger, Sophie
dc.contributor.author
Laimer, Markus
dc.contributor.author
Fleisch, Elgar
dc.contributor.author
Stettler, Christoph
dc.date.accessioned
2023-06-08T12:02:28Z
dc.date.available
2023-03-07T19:04:45Z
dc.date.available
2023-03-08T08:39:01Z
dc.date.available
2023-06-08T12:02:28Z
dc.date.issued
2023-06
dc.identifier.issn
1462-8902
dc.identifier.issn
1463-1326
dc.identifier.other
10.1111/dom.15021
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/602169
dc.identifier.doi
10.3929/ethz-b-000602169
dc.description.abstract
Aim
To develop and evaluate the concept of a non-invasive machine learning (ML) approach for detecting hypoglycaemia based exclusively on combined driving (CAN) and eye tracking (ET) data.
Materials and Methods
We first developed and tested our ML approach in pronounced hypoglycaemia, and then we applied it to mild hypoglycaemia to evaluate its early warning potential. For this, we conducted two consecutive, interventional studies in individuals with type 1 diabetes. In study 1 (n = 18), we collected CAN and ET data in a driving simulator during euglycaemia and pronounced hypoglycaemia (blood glucose [BG] 2.0-2.5 mmol L−1). In study 2 (n = 9), we collected CAN and ET data in the same simulator but in euglycaemia and mild hypoglycaemia (BG 3.0-3.5 mmol L−1).
Results
Here, we show that our ML approach detects pronounced and mild hypoglycaemia with high accuracy (area under the receiver operating characteristics curve 0.88 ± 0.10 and 0.83 ± 0.11, respectively).
Conclusions
Our findings suggest that an ML approach based on CAN and ET data, exclusively, enables detection of hypoglycaemia while driving. This provides a promising concept for alternative and non-invasive detection of hypoglycaemia.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Wiley-Blackwell
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Diabetes complications
en_US
dc.subject
Hypoglycaemia
en_US
dc.subject
Type 1 diabetes
en_US
dc.subject
Glycaemic control
en_US
dc.title
Machine learning for non‐invasive sensing of hypoglycaemia while driving in people with diabetes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2023-02-15
ethz.journal.title
Diabetes, Obesity and Metabolism
ethz.journal.volume
25
en_US
ethz.journal.issue
6
en_US
ethz.journal.abbreviated
Diabetes Obes Metab
ethz.pages.start
1668
en_US
ethz.pages.end
1676
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Design and Evaluation of a Vehicle Hypoaglycemia Warning System in Diabetes (HEADWIND Project)
en_US
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.grant.agreementno
183569
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Sinergia
ethz.date.deposited
2023-03-07T19:04:45Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-06-08T12:02:30Z
ethz.rosetta.lastUpdated
2024-02-02T23:57:34Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Machine%20learning%20for%20non%E2%80%90invasive%20sensing%20of%20hypoglycaemia%20while%20driving%20in%20people%20with%20diabetes&rft.jtitle=Diabetes,%20Obesity%20and%20Metabolism&rft.date=2023-06&rft.volume=25&rft.issue=6&rft.spage=1668&rft.epage=1676&rft.issn=1462-8902&1463-1326&rft.au=Lehmann,%20Vera&Zueger,%20Thomas&Maritsch,%20Martin&Kraus,%20Mathias&Albrecht,%20Caroline&rft.genre=article&rft_id=info:doi/10.1111/dom.15021&
Files in this item
Publication type
-
Journal Article [132262]