Genetic algorithm-based optimization framework for control parameters of ventricular assist devices
dc.contributor.author
Magkoutas, Konstantinos
dc.contributor.author
Nunes Rossato, Leonardo
dc.contributor.author
Heim, Marco
dc.contributor.author
Schmid Daners, Marianne
dc.date.accessioned
2023-03-20T06:28:27Z
dc.date.available
2023-03-18T09:11:05Z
dc.date.available
2023-03-20T06:28:27Z
dc.date.issued
2023-08
dc.identifier.issn
1746-8094
dc.identifier.other
10.1016/j.bspc.2023.104788
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/603787
dc.identifier.doi
10.3929/ethz-b-000603787
dc.description.abstract
In this work, a novel, genetic algorithm-based optimization framework (GAOF) has been developed and evaluated to optimize the control parameters of ventricular assist devices (VADs). This framework enables the optimization of complex control structures based on VAD- and patient-specific characteristics by allowing the selection of the numerical model of the human cardiovascular system and the VAD to represent the patient scenario of interest accurately. Additionally, the GAOF can incorporate treatment-specific goals during the definition of the objective functions of the optimization problem and, consequently, promotes the development of treatment-specific VAD controllers. The efficacy of the GAOF was assessed with one- and two-degree-of-freedom physiologic proportional-integral-derivative controllers and a physiologic data-driven iterative learning controller. Two VAD designs and various patient disease scenarios were used to further explore and evaluate the capabilities of the GAOF. The optimized controllers outperformed substantially the hand-tuned controller, which was used as the benchmark, in all the investigated cases. This highlights the potential improvement in the performance of any VAD controller by deploying the GAOF and, consequently, the possibility to increase the survival rates and enhance the quality of life of VAD patients.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Genetic algorithm
en_US
dc.subject
Optimization
en_US
dc.subject
Ventricular assist devices
en_US
dc.subject
VAD physiological control
en_US
dc.subject
PID optimization
en_US
dc.subject
Heart failure
en_US
dc.subject
Control parameter optimization
en_US
dc.title
Genetic algorithm-based optimization framework for control parameters of ventricular assist devices
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2023-03-17
ethz.journal.title
Biomedical Signal Processing and Control
ethz.journal.volume
85
en_US
ethz.pages.start
104788
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Oxford
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02665 - Inst. f. Design, Mat. und Fabrikation::03943 - Meboldt, Mirko / Meboldt, Mirko
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09563 - Zeilinger, Melanie / Zeilinger, Melanie
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02665 - Inst. f. Design, Mat. und Fabrikation::03943 - Meboldt, Mirko / Meboldt, Mirko
en_US
ethz.date.deposited
2023-03-18T09:11:06Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-03-20T06:28:28Z
ethz.rosetta.lastUpdated
2023-03-20T06:28:28Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Genetic%20algorithm-based%20optimization%20framework%20for%20control%20parameters%20of%20ventricular%20assist%20devices&rft.jtitle=Biomedical%20Signal%20Processing%20and%20Control&rft.date=2023-08&rft.volume=85&rft.spage=104788&rft.issn=1746-8094&rft.au=Magkoutas,%20Konstantinos&Nunes%20Rossato,%20Leonardo&Heim,%20Marco&Schmid%20Daners,%20Marianne&rft.genre=article&rft_id=info:doi/10.1016/j.bspc.2023.104788&
Files in this item
Publication type
-
Journal Article [121993]