Show simple item record

dc.contributor.author
Hiptmair, Ralf
dc.contributor.author
Pauly, Dirk
dc.contributor.author
Schulz, Erick
dc.date.accessioned
2023-03-21T08:19:48Z
dc.date.available
2023-03-21T04:12:55Z
dc.date.available
2023-03-21T08:19:48Z
dc.date.issued
2023-05-15
dc.identifier.issn
0022-1236
dc.identifier.issn
1096-0783
dc.identifier.other
10.1016/j.jfa.2023.109905
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/604162
dc.identifier.doi
10.3929/ethz-b-000604162
dc.description.abstract
We study a new notion of trace operators and trace spaces for abstract Hilbert complexes. We introduce trace spaces as quotient spaces/annihilators. We characterize the kernels and images of the related trace operators and discuss duality relationships between trace spaces. We elaborate that many properties of the classical boundary traces associated with the Euclidean de Rham complex on bounded Lipschitz domains are rooted in the general structure of Hilbert complexes. We arrive at abstract trace Hilbert complexes that can be formulated using quotient spaces/annihilators. We show that, if a Hilbert complex admits stable “regular decompositions” with compact lifting operators, then the associated trace Hilbert complex is Fredholm. Incarnations of abstract concepts and results in the concrete case of the de Rham complex in three-dimensional Euclidean space will be discussed throughout.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Trace operator
en_US
dc.subject
Hilbert complex
en_US
dc.subject
Surface operator
en_US
dc.subject
Regular decomposition
en_US
dc.title
Traces for Hilbert complexes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-02-24
ethz.journal.title
Journal of Functional Analysis
ethz.journal.volume
284
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
J. Funct. Anal.
ethz.pages.start
109905
en_US
ethz.size
50 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Novel Boundary Element Methods for Electromagnetics
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
ethz.grant.agreementno
184848
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isNewVersionOf
20.500.11850/552757
ethz.date.deposited
2023-03-21T04:12:56Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-03-21T08:19:51Z
ethz.rosetta.lastUpdated
2024-02-02T21:13:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Traces%20for%20Hilbert%20complexes&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2023-05-15&rft.volume=284&rft.issue=10&rft.spage=109905&rft.issn=0022-1236&1096-0783&rft.au=Hiptmair,%20Ralf&Pauly,%20Dirk&Schulz,%20Erick&rft.genre=article&rft_id=info:doi/10.1016/j.jfa.2023.109905&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record