Real-Time Forecast of Catastrophic Landslides via Dragon-King Detection
dc.contributor.author
Lei, Qinghua
dc.contributor.author
Sornette, Didier
dc.contributor.author
Yang, Haonan
dc.contributor.author
Loew, Simon
dc.date.accessioned
2023-03-30T11:40:23Z
dc.date.available
2023-03-28T04:38:18Z
dc.date.available
2023-03-30T11:40:23Z
dc.date.issued
2023-03-28
dc.identifier.issn
0094-8276
dc.identifier.issn
1944-8007
dc.identifier.other
10.1029/2022GL100832
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/605273
dc.identifier.doi
10.3929/ethz-b-000605273
dc.description.abstract
Catastrophic landslides characterized by runaway slope failures remain difficult to predict. Here, we develop a physics-based framework to prospectively assess slope failure potential. Our method builds upon the physics of extreme events in natural systems: the extremes so-called "dragon-kings" (e.g., slope tertiary creeps prior to failure) exhibit statistically different properties than other smaller-sized events (e.g., slope secondary creeps). We develop statistical tools to detect the emergence of dragon-kings during landslide evolution, with the secondary-to-tertiary creep transition quantitatively captured. We construct a phase diagram characterizing the detectability of dragon-kings against "black-swans" and informing on whether the slope evolves toward a catastrophic or slow landslide. We test our method on synthetic and real data sets, demonstrating how it might have been used to forecast three representative historical landslides. Our method can in principle considerably reduce the number of false alarms and identify with high confidence the presence of true hazards of catastrophic landslides.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Geophysical Union
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
landslides
en_US
dc.subject
catastrophic failure
en_US
dc.subject
prediction
en_US
dc.subject
dragon-king
en_US
dc.subject
phase diagram
en_US
dc.subject
risk
en_US
dc.title
Real-Time Forecast of Catastrophic Landslides via Dragon-King Detection
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2023-03-14
ethz.journal.title
Geophysical Research Letters
ethz.journal.volume
50
en_US
ethz.journal.issue
6
en_US
ethz.journal.abbreviated
Geophys. Res. Lett.
ethz.pages.start
e2022GL100832
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Future evolution of meta-stable rock slopes in hydropower systems of China: Implications for long-term safety
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
189882
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Sino-Swiss Science and Technology Cooperation (SSSTC)
ethz.date.deposited
2023-03-28T04:38:30Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-03-30T11:40:24Z
ethz.rosetta.lastUpdated
2024-02-02T21:25:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Real-Time%20Forecast%20of%20Catastrophic%20Landslides%20via%20Dragon-King%20Detection&rft.jtitle=Geophysical%20Research%20Letters&rft.date=2023-03-28&rft.volume=50&rft.issue=6&rft.spage=e2022GL100832&rft.issn=0094-8276&1944-8007&rft.au=Lei,%20Qinghua&Sornette,%20Didier&Yang,%20Haonan&Loew,%20Simon&rft.genre=article&rft_id=info:doi/10.1029/2022GL100832&
Files in this item
Publication type
-
Journal Article [132172]