Show simple item record

dc.contributor.author
Simpson, Thomas
dc.contributor.author
Dervilis, Nikolaos
dc.contributor.author
Couturier, Philippe
dc.contributor.author
Maljaars, Nico
dc.contributor.author
Chatzi, Eleni
dc.date.accessioned
2023-04-12T07:04:15Z
dc.date.available
2023-04-11T16:49:27Z
dc.date.available
2023-04-12T07:04:15Z
dc.date.issued
2023-03-06
dc.identifier.issn
2296-598X
dc.identifier.other
10.3389/fenrg.2023.1128201
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/607265
dc.identifier.doi
10.3929/ethz-b-000607265
dc.description.abstract
Non-linear analysis is of increasing importance in wind energy engineering as a result of their exposure in extreme conditions and the ever-increasing size and slenderness of wind turbines. Whilst modern computing capabilities facilitate execution of complex analyses, certain applications which require multiple or real-time analyses remain a challenge, motivating adoption of accelerated computing schemes, such as reduced order modelling (ROM) methods. Soil structure interaction (SSI) simulations fall in this class of problems, with the non-linear restoring force significantly affecting the dynamic behaviour of the turbine. In this work, we propose a ROM approach to the SSI problem using a recently developed ROM methodology. We exploit a data-driven non-linear ROM methodology coupling an autoencoder with long short-term memory (LSTM) neural networks. The ROM is trained to emulate a steel monopile foundation constrained by non-linear soil and subject to forces and moments at the top of the foundation, which represent the equivalent loading of an operating turbine under wind and wave forcing. The ROM well approximates the time domain and frequency domain response of the Full Order Model (FOM) over a range of different wind and wave loading regimes, whilst reducing the computational toll by a factor of 300. We further propose an error metric for capturing isolated failure instances of the ROM.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Frontiers Media
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
SSI
en_US
dc.subject
rom
en_US
dc.subject
LSTM
en_US
dc.subject
autoencoder (AE)
en_US
dc.subject
non-linear
en_US
dc.subject
machine learning
en_US
dc.title
Reduced order modeling of non-linear monopile dynamics via an AE-LSTM scheme
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Frontiers in Energy Research
ethz.journal.volume
11
en_US
ethz.journal.abbreviated
Front. Energy Res.
ethz.pages.start
1128201
en_US
ethz.size
17 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Dynamic virtualisation: modelling performance of engineering structures
en_US
ethz.identifier.wos
ethz.publication.place
Lausanne
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
764547
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2023-04-11T16:49:31Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-04-12T07:04:18Z
ethz.rosetta.lastUpdated
2024-02-02T21:34:30Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Reduced%20order%20modeling%20of%20non-linear%20monopile%20dynamics%20via%20an%20AE-LSTM%20scheme&rft.jtitle=Frontiers%20in%20Energy%20Research&rft.date=2023-03-06&rft.volume=11&rft.spage=1128201&rft.issn=2296-598X&rft.au=Simpson,%20Thomas&Dervilis,%20Nikolaos&Couturier,%20Philippe&Maljaars,%20Nico&Chatzi,%20Eleni&rft.genre=article&rft_id=info:doi/10.3389/fenrg.2023.1128201&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record