On the Spectral Form Factor for Random Matrices
dc.contributor.author
Cipolloni, Giorgio
dc.contributor.author
Erdős, László
dc.contributor.author
Schröder, Dominik
dc.date.accessioned
2023-07-12T11:19:54Z
dc.date.available
2023-04-16T03:26:39Z
dc.date.available
2023-04-17T04:33:15Z
dc.date.available
2023-07-12T11:19:54Z
dc.date.issued
2023-07
dc.identifier.issn
1432-0916
dc.identifier.issn
0010-3616
dc.identifier.other
10.1007/s00220-023-04692-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/608082
dc.identifier.doi
10.3929/ethz-b-000608082
dc.description.abstract
In the physics literature the spectral form factor (SFF), the squared Fourier transform of the empirical eigenvalue density, is the most common tool to test universality for disordered quantum systems, yet previous mathematical results have been restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021. https://doi.org/10.1007/s10955-021-02767-5, Commun Math Phys 387:215-235, 2021. https://doi.org/10.1007/s00220-021-04193-w). We rigorously prove the physics prediction on SFF up to an intermediate time scale for a large class of random matrices using a robust method, the multi-resolvent local laws. Beyond Wigner matrices we also consider the monoparametric ensemble and prove that universality of SFF can already be triggered by a single random parameter, supplementing the recently proven Wigner-Dyson universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10. 1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime, as customarily called in physics.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
On the Spectral Form Factor for Random Matrices
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-03-23
ethz.journal.title
Communications in Mathematical Physics
ethz.journal.volume
401
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
Commun. Math. Phys.
ethz.pages.start
1665
en_US
ethz.pages.end
1700
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2023-04-16T03:26:40Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-07-12T11:19:55Z
ethz.rosetta.lastUpdated
2024-02-03T01:37:48Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20Spectral%20Form%20Factor%20for%20Random%20Matrices&rft.jtitle=Communications%20in%20Mathematical%20Physics&rft.date=2023-07&rft.volume=401&rft.issue=2&rft.spage=1665&rft.epage=1700&rft.issn=1432-0916&0010-3616&rft.au=Cipolloni,%20Giorgio&Erd%C5%91s,%20L%C3%A1szl%C3%B3&Schr%C3%B6der,%20Dominik&rft.genre=article&rft_id=info:doi/10.1007/s00220-023-04692-y&
Files in this item
Publication type
-
Journal Article [132337]