Show simple item record

dc.contributor.author
Kantarcioglu, Omer
dc.contributor.author
Schindler, Konrad
dc.contributor.author
Kocaman, Sultan
dc.contributor.editor
Altan, Orhan
dc.contributor.editor
Sunar, Filiz
dc.contributor.editor
Klein, Doris
dc.date.accessioned
2023-07-03T12:06:56Z
dc.date.available
2023-05-14T01:06:07Z
dc.date.available
2023-07-03T12:06:56Z
dc.date.issued
2023-04
dc.identifier.issn
1682-1750
dc.identifier.issn
2194-9034
dc.identifier.issn
1682-1777
dc.identifier.other
10.5194/isprs-archives-XLVIII-M-1-2023-161-2023
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/612015
dc.identifier.doi
10.3929/ethz-b-000612015
dc.description.abstract
Forest fires have devastating effects on biodiversity, climate, and humans. Producing detailed and reliable forest fire susceptibility maps is crucial for disaster management. Data-driven machine learning methods can be applied for forest fire susceptibility mapping, and learning data required for this purpose can be obtained from high-resolution satellite imagery along with a fire inventory. In this study, we assessed the performances of Random Forest (RF) and artificial neural network (ANN) classifiers for producing forest fire susceptibility maps of a region in north-east Türkiye covering Trabzon, Gümüşhane, Rize, and Bayburt provinces using freely available Earth observation data and forest inventory provided by the regional directorate. Forest type, EU-DEM v1.1 (25 m), and tree cover density were retrieved from Copernicus Land Monitoring Service. Sentinel-2 images were utilized for calculating spectral indices such as normalized difference vegetation index and modified normalized difference water index to assess surface water and vegetation characteristics. Thus, a total of twelve variables including topographic, anthropogenic, hydrologic, vegetation and land use data were used as input. The RF and ANN illustrated similar prediction performances based on receiver operating characteristics (ROC) area under the curve (AUC) values, which were 0.89 and 0.88, respectively. The RF performed better in terms of overall accuracy and F-1 score. The susceptibility maps with 25 m resolution were also investigated visually. The ANN results predicted higher susceptibility levels and larger areas were found prone to wildfire. Leave-one-out analysis results indicated that elevation was the most influential factor based on the achieved OA.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Forest fire susceptibility
en_US
dc.subject
forest inventory
en_US
dc.subject
random forest
en_US
dc.subject
artificial neural network
en_US
dc.subject
spatial probability distribution
en_US
dc.title
Forest fire susceptibility assessment with machine learning methods in north-east Turkiye
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-04-23
ethz.journal.title
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
ethz.journal.volume
XLVIII-M-1-2023
en_US
ethz.journal.abbreviated
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.
ethz.pages.start
161
en_US
ethz.pages.end
167
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
39th International Symposium on Remote Sensing of Environment (ISRSE-39)
en_US
ethz.event.location
Antalya, Turkey
en_US
ethz.event.date
April 24-28, 2023
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Göttingen
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
ethz.date.deposited
2023-05-14T01:06:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-07-03T12:06:57Z
ethz.rosetta.lastUpdated
2024-02-03T00:58:47Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Forest%20fire%20susceptibility%20assessment%20with%20machine%20learning%20methods%20in%20north-east%20Turkiye&rft.jtitle=International%20Archives%20of%20the%20Photogrammetry,%20Remote%20Sensing%20and%20Spatial%20Information%20Sciences&rft.date=2023-04&rft.volume=XLVIII-M-1-2023&rft.spage=161&rft.epage=167&rft.issn=1682-1750&2194-9034&1682-1777&rft.au=Kantarcioglu,%20Omer&Schindler,%20Konrad&Kocaman,%20Sultan&rft.genre=proceeding&rft_id=info:doi/10.5194/isprs-archives-XLVIII-M-1-2023-161-2023&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record