Show simple item record

dc.contributor.author
Grezes, Cécile
dc.contributor.author
Kandazoglou, Aurélie
dc.contributor.author
Cosset-Cheneau, Maxen
dc.contributor.author
Vicente Arche, Luis M.
dc.contributor.author
Noël, Paul
dc.contributor.author
Sgarro, Paolo
dc.contributor.author
Auffret, Stephane
dc.contributor.author
Garello, Kevin
dc.contributor.author
Bibes, Manuel
dc.contributor.author
Vila, Laurent
dc.contributor.author
Attané, Jean-Philippe
dc.date.accessioned
2023-05-24T09:14:06Z
dc.date.available
2023-05-24T05:56:45Z
dc.date.available
2023-05-24T09:14:06Z
dc.date.issued
2023-12-01
dc.identifier.issn
2041-1723
dc.identifier.other
10.1038/s41467-023-37866-2
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/613354
dc.identifier.doi
10.3929/ethz-b-000613354
dc.description.abstract
Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure. Here, we report the non-volatile electric-field control of SOTs in an oxide-based Rashba-Edelstein 2DEG. We demonstrate that the 2DEG is controlled using a back-gate electric-field, providing two remanent and switchable states, with a large resistance contrast of 1064%. The SOTs can then be controlled electrically in a non-volatile way, both in amplitude and in sign. This achievement in a 2DEG-CoFeB/MgO heterostructures with large perpendicular magnetization further validates the compatibility of oxide 2DEGs for magnetic tunnel junction integration, paving the way to the advent of electrically reconfigurable SOT MRAMS circuits, SOT oscillators, skyrmion and domain-wall-based devices, and magnonic circuits.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Non-volatile electric control of spin-orbit torques in an oxide two-dimensional electron gas
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Nature Communications
ethz.journal.volume
14
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Nat Commun
ethz.pages.start
2590
en_US
ethz.size
7 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Spin-orbit materials, emergent phenomena and related technology training
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
955671
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2023-05-24T05:56:45Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-02-02T23:29:42Z
ethz.rosetta.lastUpdated
2024-02-02T23:29:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Non-volatile%20electric%20control%20of%20spin-orbit%20torques%20in%20an%20oxide%20two-dimensional%20electron%20gas&rft.jtitle=Nature%20Communications&rft.date=2023-12-01&rft.volume=14&rft.issue=1&rft.spage=2590&rft.issn=2041-1723&rft.au=Grezes,%20C%C3%A9cile&Kandazoglou,%20Aur%C3%A9lie&Cosset-Cheneau,%20Maxen&Vicente%20Arche,%20Luis%20M.&No%C3%ABl,%20Paul&rft.genre=article&rft_id=info:doi/10.1038/s41467-023-37866-2&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record