Open access
Datum
2023-01Typ
- Journal Article
Abstract
We consider likelihood score-based methods for causal discovery in structural causal models. In particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood scoring in combination with nonparametric regression methods. Mehr anzeigen
Persistenter Link
https://doi.org/10.3929/ethz-b-000613690Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
Journal of Causal InferenceBand
Seiten / Artikelnummer
Verlag
De GruyterThema
graphical models; model misspecification; non-parametric regression; structural causal modelsOrganisationseinheit
03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
Förderung
786461 - Statistics, Prediction and Causality for Large-Scale Data (EC)