Decremental Strongly Connected Components and Single-Source Reachability in Near-Linear Time
dc.contributor.author
Bernstein, Aaron
dc.contributor.author
Probst Gutenberg, Maximilian
dc.contributor.author
Wulff-Nilsen, Christian
dc.date.accessioned
2023-06-01T05:50:59Z
dc.date.available
2023-05-31T03:20:51Z
dc.date.available
2023-06-01T05:50:59Z
dc.date.issued
2023-04
dc.identifier.issn
0097-5397
dc.identifier.issn
1095-7111
dc.identifier.other
10.1137/20M1312149
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/614363
dc.description.abstract
Computing the strongly connected Components (SCCs) in a graph G = (V, E) is known to take only O(m+n) time using an algorithm by Tarjan [SIAM J. Comput., 1 (1972), pp. 146-160] where m = |E|, n = |V |. For fully dynamic graphs, conditional lower bounds provide evidence that the update time cannot be improved by polynomial factors over recomputing the SCCs from scratch after every update. Nevertheless, substantial progress has been made to find algorithms with fast update time for decremental graphs, i.e., graphs that undergo edge deletions. In this paper, we present the first algorithm for general decremental graphs that maintains the SCCs in total update time O(m), thus only a polylogarithmic factor from the optimal running time. (We use O(f(n)) notation to suppress logarithmic factors, i.e., g(n) = O(f(n)) if g(n) = O(f(n)polylog(n)).) Our result also yields the fastest algorithm for the decremental single-source reachability (SSR) problem which can be reduced to decrementally maintaining SCCs. Using a well-known reduction, we use our decremental result to achieve new update/query-time trade-offs in the fully dynamic setting. We can maintain the reachability of pairs S × V , S ⊆ V in fully dynamic graphs with update time O(|S|mt) and query time O(t) for all t ∊ [1, |S|]; this matches to polylogarithmic factors the best all-pairs reachability algorithm for S = V .
en_US
dc.language.iso
en
en_US
dc.publisher
SIAM
dc.subject
dynamic graph algorithms
en_US
dc.subject
data structures
en_US
dc.subject
strongly connected components
en_US
dc.subject
single-source reachability
en_US
dc.subject
reachability
en_US
dc.subject
ES-tree
en_US
dc.title
Decremental Strongly Connected Components and Single-Source Reachability in Near-Linear Time
en_US
dc.type
Journal Article
dc.date.published
2021-12-14
ethz.journal.title
SIAM Journal on Computing
ethz.journal.volume
52
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
SIAM j. comput. (Print)
ethz.pages.start
128
en_US
ethz.pages.end
155
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Philadelphia, PA
ethz.publication.status
published
en_US
ethz.date.deposited
2023-05-31T03:20:52Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-02-02T23:52:02Z
ethz.rosetta.lastUpdated
2024-02-02T23:52:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Decremental%20Strongly%20Connected%20Components%20and%20Single-Source%20Reachability%20in%20Near-Linear%20Time&rft.jtitle=SIAM%20Journal%20on%20Computing&rft.date=2023-04&rft.volume=52&rft.issue=2&rft.spage=128&rft.epage=155&rft.issn=0097-5397&1095-7111&rft.au=Bernstein,%20Aaron&Probst%20Gutenberg,%20Maximilian&Wulff-Nilsen,%20Christian&rft.genre=article&rft_id=info:doi/10.1137/20M1312149&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [130404]