Neural Oscillators are Universal
dc.contributor.author
Lanthaler, Samuel
dc.contributor.author
Rusch, T. Konstantin
dc.contributor.author
Mishra, Siddhartha
dc.date.accessioned
2023-06-15T13:20:42Z
dc.date.available
2023-06-02T10:56:28Z
dc.date.available
2023-06-15T13:20:42Z
dc.date.issued
2023-05
dc.identifier.uri
http://hdl.handle.net/20.500.11850/614871
dc.description.abstract
Coupled oscillators are being increasingly used as the basis of machine learning (ML) architectures, for instance in sequence modeling, graph representation learning and in physical neural networks that are used in analog ML devices. We introduce an abstract class of neural oscillators that encompasses these architectures and prove that neural oscillators are universal, i.e, they can approximate any continuous and casual operator mapping between time-varying functions, to desired accuracy. This universality result provides theoretical justification for the use of oscillator based ML systems. The proof builds on a fundamental result of independent interest, which shows that a combination of forced harmonic oscillators with a nonlinear read-out suffices to approximate the underlying operators.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.subject
Neural oscillators
en_US
dc.subject
Neural ODEs
en_US
dc.subject
Universal approximation
en_US
dc.subject
Deep learning
en_US
dc.subject
Hamiltonian systems
en_US
dc.title
Neural Oscillators are Universal
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2023-20
en_US
ethz.size
21 p.
en_US
ethz.grant
Computation and analysis of statistical solutions of fluid flow
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=1057
ethz.grant.agreementno
770880
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.relation.isPreviousVersionOf
handle/20.500.11850/686158
ethz.date.deposited
2023-06-02T10:56:28Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=1057
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-06-15T13:20:44Z
ethz.rosetta.lastUpdated
2023-06-15T13:20:44Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Neural%20Oscillators%20are%20Universal&rft.jtitle=SAM%20Research%20Report&rft.date=2023-05&rft.volume=2023-20&rft.au=Lanthaler,%20Samuel&Rusch,%20T.%20Konstantin&Mishra,%20Siddhartha&rft.genre=report&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Report [7029]