Show simple item record

dc.contributor.author
Xin, Yanan
dc.contributor.author
Hong, Ye
dc.contributor.author
Dirmeier, Simon
dc.contributor.author
Perez-Cruz, Fernando
dc.contributor.author
Raubal, Martin
dc.date.accessioned
2023-06-12T06:37:43Z
dc.date.available
2023-06-09T13:55:00Z
dc.date.available
2023-06-12T06:37:43Z
dc.date.issued
2023-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/615973
dc.identifier.doi
10.3929/ethz-b-000615973
dc.description.abstract
Changes in the characteristics of mobility data can significantly influence the predictive performance of deep learning models. However, there is still a lack of understanding of the degree of their impacts and the robustness of deep learning models against the variability of these characteristics. This hinders the development of benchmark datasets for evaluating different mobility prediction models. In this study, we use a causal intervention approach to evaluate the robustness of deep learning models towards different interventions of mobility data characteristics, using both traffic forecast and individual next-location prediction as case studies.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Robustness of Deep Learning
en_US
dc.subject
Mobility Prediction
en_US
dc.subject
Causal Intervention
en_US
dc.subject
Mechanistic Mobility Simulator
en_US
dc.title
Evaluating the Robustness of Deep Learning Models for Mobility Prediction Through Causal Interventions
en_US
dc.type
Conference Poster
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
1 p.
en_US
ethz.event
Center for Sustainable Future Mobility Symposium 2023 (CSFM 2023)
en_US
ethz.event.location
Zurich, Switzerland
ethz.event.date
June 6, 2023
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03901 - Raubal, Martin / Raubal, Martin
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02648 - Inst. f. Kartografie und Geoinformation / Institute of Cartography&Geoinformation::03901 - Raubal, Martin / Raubal, Martin
en_US
ethz.date.deposited
2023-06-09T13:55:00Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-06-12T06:37:44Z
ethz.rosetta.lastUpdated
2024-02-03T00:00:26Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Evaluating%20the%20Robustness%20of%20Deep%20Learning%20Models%20for%20Mobility%20Prediction%20Through%20Causal%20Interventions&rft.date=2023-06&rft.au=Xin,%20Yanan&Hong,%20Ye&Dirmeier,%20Simon&Perez-Cruz,%20Fernando&Raubal,%20Martin&rft.genre=unknown&rft.btitle=Evaluating%20the%20Robustness%20of%20Deep%20Learning%20Models%20for%20Mobility%20Prediction%20Through%20Causal%20Interventions
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record