Mapping RO observations using different ML algorithms
dc.contributor.author
Zosso, Elias
dc.contributor.supervisor
Soja, Benedikt
dc.contributor.supervisor
Shehaj, Endrit
dc.contributor.supervisor
Crocetti, Laura
dc.date.accessioned
2023-06-19T09:28:27Z
dc.date.available
2023-06-15T14:27:30Z
dc.date.available
2023-06-16T05:58:31Z
dc.date.available
2023-06-19T09:28:27Z
dc.date.issued
2023-06-15
dc.identifier.uri
http://hdl.handle.net/20.500.11850/616959
dc.identifier.doi
10.3929/ethz-b-000616959
dc.description.abstract
Through Global Navigation Satellite Systems (GNSS) Radio occultation (RO), the bending of radio signals due to their refractions while passing through earth’s atmosphere can be measured using Low Earth Orbit satellites. The refractivities determined with such measurements are crucial in the creation of Numerical Weather Models (NWM), which are used to display the atmosphere’s temperature, pressure, and humidity. Due to the sparse and non-uniform distribution of RO observations, this data cannot resolve synoptic variabilities, and improvements in horizontal resolution are necessary.
This thesis compares the abilities of various Machine Learning algorithms - namely, Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN) - to predict and map RO refractivity. Data from COSMIC-2 and ECMWF forecasts interpolated at 2 km height are used to train and test the models. Using only the COSMIC data, the RFR achieved the most accurate prediction with a posterior standard deviation of 8.72 N-units. Incorporating the ECMWF forecasts the CNN model was able to predict the refractivity with a standard deviation of 5.64 N-units. Additionally, the thesis assessed the impact of various factors such as different forecast times, temporal splitting of the training data, and the use of the refractivity residuals for training the models.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Radio Occulation
en_US
dc.subject
Machine Learning
en_US
dc.title
Mapping RO observations using different ML algorithms
en_US
dc.type
Bachelor Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
36 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::520 - Astronomy, cartography
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
en_US
ethz.date.deposited
2023-06-15T14:27:31Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-06-19T09:28:29Z
ethz.rosetta.lastUpdated
2024-02-03T00:16:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Mapping%20RO%20observations%20using%20different%20ML%20algorithms&rft.date=2023-06-15&rft.au=Zosso,%20Elias&rft.genre=unknown&rft.btitle=Mapping%20RO%20observations%20using%20different%20ML%20algorithms
Files in this item
Publication type
-
Bachelor Thesis [181]