Metadata only
Date
2023-12Type
- Journal Article
Abstract
Let (λf (n))n⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f. We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL2 Maass forms, the Rankin-Selberg coefficients (λf (n)2)n⩾1 admit a level of distribution θ = 2/5 + 1/260 − η in arithmetic progressions. Show more
Publication status
publishedExternal links
Journal / series
Science China MathematicsVolume
Pages / Article No.
Publisher
Science China PressSubject
arithmetic progressions; Rankin-Selberg L-functions; delta-methodOrganisational unit
03796 - Kowalski, Emmanuel / Kowalski, Emmanuel
More
Show all metadata