Show simple item record

dc.contributor.author
Lingsch, Levi
dc.contributor.author
Michelis, Mike Yan
dc.contributor.author
Perera, Sirani M.
dc.contributor.author
Katzschmann, Robert K.
dc.contributor.author
Mishra, Siddhartha
dc.date.accessioned
2023-07-05T12:01:16Z
dc.date.available
2023-06-28T09:41:43Z
dc.date.available
2023-07-05T12:01:16Z
dc.date.issued
2023-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/618932
dc.description.abstract
Fourier Neural Operators (FNOs) have emerged as very popular machine learning architectures for learning operators, particularly those arising in PDEs. However, as FNOs rely on the fast Fourier transform for computational efficiency, the architecture can be limited to input data on equispaced Cartesian grids. Here, we generalize FNOs to handle input data on non-equispaced point distributions. Our proposed model, termed as Vandermonde Neural Operator (VNO), utilizes Vandermonde-structured matrices to efficiently compute forward and inverse Fourier transforms, even on arbitrarily distributed points. We present numerical experiments to demonstrate that VNOs can be significantly faster than FNOs, while retaining comparable accuracy, and improve upon accuracy of comparable non-equispaced methods such as the Geo-FNO.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.title
Vandermonde Neural Operators
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2023-24
en_US
ethz.size
22 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09689 - Katzschmann, Robert / Katzschmann, Robert
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09689 - Katzschmann, Robert / Katzschmann, Robert
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=1061
ethz.date.deposited
2023-06-28T09:41:43Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=1061
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-07-05T12:01:18Z
ethz.rosetta.lastUpdated
2025-02-14T04:54:36Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Vandermonde%20Neural%20Operators&rft.jtitle=SAM%20Research%20Report&rft.date=2023-06&rft.volume=2023-24&rft.au=Lingsch,%20Levi&Michelis,%20Mike%20Yan&Perera,%20Sirani%20M.&Katzschmann,%20Robert%20K.&Mishra,%20Siddhartha&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record