Show simple item record

dc.contributor.author
Raonić, Bogdan
dc.contributor.author
Molinaro, Roberto
dc.contributor.author
De Ryck, Tim
dc.contributor.author
Rohner, Tobias
dc.contributor.author
Bartolucci, Francesca
dc.contributor.author
Alaifari, Rima
dc.contributor.author
Mishra, Siddhartha
dc.contributor.author
de Bézenac, Emmanuel
dc.date.accessioned
2023-07-05T12:23:51Z
dc.date.available
2023-06-28T09:46:35Z
dc.date.available
2023-07-05T12:23:51Z
dc.date.issued
2023-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/618933
dc.description.abstract
Although very successfully used in conventional machine learning, convolution based neural network architectures -- believed to be inconsistent in function space -- have been largely ignored in the context of learning solution operators of PDEs. Here, we present novel adaptations for convolutional neural networks to demonstrate that they are indeed able to process functions as inputs and outputs. The resulting architecture, termed as convolutional neural operators (CNOs), is designed specifically to preserve its underlying continuous nature, even when implemented in a discretized form on a computer. We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy. CNOs are tested on a novel suite of benchmarks, encompassing a diverse set of PDEs with possibly multi-scale solutions and are observed to significantly outperform baselines, paving the way for an alternative framework for robust and accurate operator learning.
en_US
dc.language.iso
en
en_US
dc.publisher
Seminar for Applied Mathematics, ETH Zurich
en_US
dc.title
Convolutional Neural Operators for robust and accurate learning of PDEs
en_US
dc.type
Report
ethz.journal.title
SAM Research Report
ethz.journal.volume
2023-25
en_US
ethz.size
66 p.
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09603 - Alaifari, Rima / Alaifari, Rima
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02219 - ETH AI Center / ETH AI Center
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03851 - Mishra, Siddhartha / Mishra, Siddhartha
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::09603 - Alaifari, Rima / Alaifari, Rima
en_US
ethz.identifier.url
https://math.ethz.ch/sam/research/reports.html?id=1062
ethz.relation.references
handle/20.500.11850/682560
ethz.date.deposited
2023-06-28T09:46:35Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
https://math.ethz.ch/sam/research/reports.html?id=1062
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-07-05T12:23:52Z
ethz.rosetta.lastUpdated
2024-02-03T01:12:08Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Convolutional%20Neural%20Operators%20for%20robust%20and%20accurate%20learning%20of%20PDEs&rft.jtitle=SAM%20Research%20Report&rft.date=2023-06&rft.volume=2023-25&rft.au=Raoni%C4%87,%20Bogdan&Molinaro,%20Roberto&De%20Ryck,%20Tim&Rohner,%20Tobias&Bartolucci,%20Francesca&rft.genre=report&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record