Enhanced Stable View-Synthesis
dc.contributor.author
Jain, Nishant
dc.contributor.author
Kumar, Suryansh
dc.contributor.author
Van Gool, Luc
dc.date.accessioned
2023-10-18T05:08:16Z
dc.date.available
2023-07-06T13:19:30Z
dc.date.available
2023-07-06T14:41:39Z
dc.date.available
2023-07-06T14:45:03Z
dc.date.available
2023-07-06T14:45:40Z
dc.date.available
2023-07-13T08:29:16Z
dc.date.available
2023-09-18T12:23:37Z
dc.date.available
2023-10-18T05:08:16Z
dc.date.issued
2023
dc.identifier.isbn
979-8-3503-0129-8
en_US
dc.identifier.other
10.1109/CVPR52729.2023.01269
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/620383
dc.identifier.doi
10.3929/ethz-b-000620383
dc.description.abstract
We introduce an approach to enhance the novel view synthesis from images taken from a freely moving camera. The introduced approach focuses on outdoor scenes where recovering accurate geometric scaffold and camera pose is challenging, leading to inferior results using the state-ofthe-art stable view synthesis (SVS) method. SVS and related methods fail for outdoor scenes primarily due to (i) overrelying on the multiview stereo (MVS) for geometric scaffold recovery and (ii) assuming COLMAP computed camera poses as the best possible estimates, despite it being wellstudied that MVS 3D reconstruction accuracy is limited to scene disparity and camera-pose accuracy is sensitive to key-point correspondence selection. This work proposes a principled way to enhance novel view synthesis solutions drawing inspiration from the basics of multiple view geometry. By leveraging the complementary behavior of MVS and monocular depth, we arrive at a better scene depth per view for nearby and far points, respectively. Moreover, our approach jointly refines camera poses with image-based rendering via multiple rotation averaging graph optimization. The recovered scene depth and the camera-pose help better view-dependent on-surface feature aggregation of the entire scene. Extensive evaluation of our approach on the popular benchmark dataset, such as Tanks and Temples, shows substantial improvement in view synthesis results compared to the prior art. For instance, our method shows 1.5 dB of PSNR improvement on the Tank and Temples. Similar statistics are observed when tested on other benchmark datasets such as FVS, Mip-NeRF 360, and DTU.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Enhanced Stable View-Synthesis
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2023-08-22
ethz.book.title
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
ethz.pages.start
13208
en_US
ethz.pages.end
13217
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.event
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023)
ethz.event.location
Vancouver, Canada
ethz.event.date
June 18-22, 2023
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::03514 - Van Gool, Luc (emeritus) / Van Gool, Luc (emeritus)
en_US
ethz.relation.isVariantFormOf
10.48550/arXiv.2303.17094
ethz.date.deposited
2023-07-06T13:19:30Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-07-06T14:41:40Z
ethz.rosetta.lastUpdated
2025-02-14T05:48:15Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Enhanced%20Stable%20View-Synthesis&rft.date=2023&rft.spage=13208&rft.epage=13217&rft.au=Jain,%20Nishant&Kumar,%20Suryansh&Van%20Gool,%20Luc&rft.isbn=979-8-3503-0129-8&rft.genre=proceeding&rft_id=info:doi/10.1109/CVPR52729.2023.01269&rft.btitle=2023%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)
Files in this item
Publication type
-
Conference Paper [36765]