Show simple item record

dc.contributor.author
Grandia, Ruben
dc.contributor.author
Farshidian, Farbod
dc.contributor.author
Knoop, Espen
dc.contributor.author
Schumacher, Christian
dc.contributor.author
Hutter, Marco
dc.contributor.author
Bächer, Moritz
dc.date.accessioned
2023-08-18T15:06:24Z
dc.date.available
2023-08-09T03:58:58Z
dc.date.available
2023-08-18T15:06:24Z
dc.date.issued
2023-08
dc.identifier.issn
0730-0301
dc.identifier.issn
1557-7368
dc.identifier.other
10.1145/3592454
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/626050
dc.description.abstract
Legged robots are designed to perform highly dynamic motions. However, it remains challenging for users to retarget expressive motions onto these complex systems. In this paper, we present a Differentiable Optimal Control (DOC) framework that facilitates the transfer of rich motions from either animals or animations onto these robots. Interfacing with either motion capture or animation data, we formulate retargeting objectives whose parameters make them agnostic to differences in proportions and numbers of degrees of freedom between input and robot. Optimizing these parameters over the manifold spanned by optimal state and control trajectories, we minimize the retargeting error. We demonstrate the utility and efficacy of our modeling by applying DOC to a Model-Predictive Control (MPC) formulation, showing retargeting results for a family of robots of varying proportions and mass distribution. With a hardware deployment, we further show that the retargeted motions are physically feasible, while MPC ensures that the robots retain their capability to react to unexpected disturbances.
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.title
DOC: Differentiable Optimal Control for Retargeting Motions onto Legged Robots
en_US
dc.type
Journal Article
dc.date.published
2023-07-26
ethz.journal.title
ACM Transactions on Graphics
ethz.journal.volume
42
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
ACM trans. graph.
ethz.pages.start
96
en_US
ethz.size
14 p.
en_US
ethz.grant
Learning Mobility for Real Legged Robots
en_US
ethz.grant
Perceptive Dynamic Locomotion on Rough Terrain
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.grant.agreementno
852044
ethz.grant.agreementno
188596
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
H2020
ethz.grant.program
Projekte MINT
ethz.date.deposited
2023-08-09T03:58:58Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-08-18T15:06:25Z
ethz.rosetta.lastUpdated
2024-02-03T02:36:38Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=DOC:%20Differentiable%20Optimal%20Control%20for%20Retargeting%20Motions%20onto%20Legged%20Robots&rft.jtitle=ACM%20Transactions%20on%20Graphics&rft.date=2023-08&rft.volume=42&rft.issue=4&rft.spage=96&rft.issn=0730-0301&1557-7368&rft.au=Grandia,%20Ruben&Farshidian,%20Farbod&Knoop,%20Espen&Schumacher,%20Christian&Hutter,%20Marco&rft.genre=article&rft_id=info:doi/10.1145/3592454&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record