Show simple item record

dc.contributor.author
Lin, Junan
dc.contributor.author
Liu, Qianqian
dc.contributor.author
Song, Yang
dc.contributor.author
Liu, Jiting
dc.contributor.author
Yin, Yixue
dc.contributor.author
Hall, Nathan S.
dc.date.accessioned
2023-09-05T10:08:12Z
dc.date.available
2023-09-03T03:47:26Z
dc.date.available
2023-09-05T10:08:12Z
dc.date.issued
2023-08
dc.identifier.issn
2077-1312
dc.identifier.other
10.3390/jmse11081608
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/629442
dc.identifier.doi
10.3929/ethz-b-000629442
dc.description.abstract
The accurate forecast of algal blooms can provide helpful information for water resource management. However, the complex relationship between environmental variables and blooms makes the forecast challenging. In this study, we build a pipeline incorporating four commonly used machine learning models, Support Vector Regression (SVR), Random Forest Regression (RFR), Wavelet Analysis (WA)-Back Propagation Neural Network (BPNN) and WA-Long Short-Term Memory (LSTM), to predict chlorophyll-a in coastal waters. Two areas with distinct environmental features, the Neuse River Estuary, NC, USA—where machine learning models are applied for short-term algal bloom forecast at single stations for the first time—and the Scripps Pier, CA, USA, are selected. Applying the pipeline, we can easily switch from the NRE forecast to the Scripps Pier forecast with minimum model tuning. The pipeline successfully predicts the occurrence of algal blooms in both regions, with more robustness using WA-LSTM and WA-BPNN than SVR and RFR. The pipeline allows us to find the best results by trying different numbers of neuron hidden layers. The pipeline is easily adaptable to other coastal areas. Experience with the two study regions demonstrated that enrichment of the dataset by including dominant physical processes is necessary to improve chlorophyll prediction when applying it to other aquatic systems.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
water quality forecast
en_US
dc.subject
coastal ocean
en_US
dc.subject
algal blooms
en_US
dc.subject
machine learning models
en_US
dc.title
Temporal Prediction of Coastal Water Quality Based on Environmental Factors with Machine Learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-08-17
ethz.journal.title
Journal of Marine Science and Engineering
ethz.journal.volume
11
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
J. mar. sci. eng.
ethz.pages.start
1608
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2023-09-03T03:47:27Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-09-05T10:08:13Z
ethz.rosetta.lastUpdated
2024-02-03T03:11:20Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Temporal%20Prediction%20of%20Coastal%20Water%20Quality%20Based%20on%20Environmental%20Factors%20with%20Machine%20Learning&rft.jtitle=Journal%20of%20Marine%20Science%20and%20Engineering&rft.date=2023-08&rft.volume=11&rft.issue=8&rft.spage=1608&rft.issn=2077-1312&rft.au=Lin,%20Junan&Liu,%20Qianqian&Song,%20Yang&Liu,%20Jiting&Yin,%20Yixue&rft.genre=article&rft_id=info:doi/10.3390/jmse11081608&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record