Show simple item record

dc.contributor.author
Xesfyngi, Yvonni
dc.contributor.author
Georgoutsou-Spyridonos, Maria
dc.contributor.author
Tripathy, Abinash
dc.contributor.author
Milionis, Athanasios
dc.contributor.author
Poulikakos, Dimos
dc.contributor.author
Mastellos, Dimitrios C.
dc.contributor.author
Tserepi, Angeliki
dc.date.accessioned
2023-09-06T14:36:08Z
dc.date.available
2023-09-04T06:53:54Z
dc.date.available
2023-09-06T14:36:08Z
dc.date.issued
2023-08
dc.identifier.issn
2079-6382
dc.identifier.other
10.3390/antibiotics12081276
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/629507
dc.identifier.doi
10.3929/ethz-b-000629507
dc.description.abstract
In this work, the antibacterial properties of nanostructured zinc oxide (ZnO) surfaces are explored by incorporating them as walls in a simple-to-fabricate microchannel device. Bacterial cell lysis is demonstrated and quantified in such a device, which functions due to the action of its nanostructured ZnO surfaces in contact with the working fluid. To shed light on the mechanism responsible for lysis, E. coli bacteria were incubated in zinc and nanostructured ZnO substrates, as well as the here-investigated ZnO-based microfluidic devices. The unprecedented killing efficiency of E. coli in nanostructured ZnO microchannels, effective after a 15 min incubation, paves the way for the implementation of such microfluidic chips in the disinfection of bacteria-containing solutions. In addition, the DNA release was confirmed by off-chip PCR and UV absorption measurements. The results indicate that the present nanostructured ZnO-based microfluidic chip can, under light, achieve partial inactivation of the released bacterial DNA via reactive oxygen species-mediated oxidative damage. The present device concept can find broader applications in cases where the presence of DNA in a sample is not desirable. Furthermore, the present microchannel device enables, in the dark, efficient release of bacterial DNA for downstream genomic DNA analysis. The demonstrated potential of this antibacterial device for tailored dual functionality in light/dark conditions is the main novel contribution of the present work.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
nanostructured ZnO
en_US
dc.subject
antibacterial surfaces
en_US
dc.subject
bacterial lysis
en_US
dc.subject
static microfluidic chip
en_US
dc.subject
bacterial DNA
en_US
dc.subject
reactive oxygen species
en_US
dc.title
A High-Performance Antibacterial Nanostructured ZnO Microfluidic Device for Controlled Bacterial Lysis and DNA Release
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-08-02
ethz.journal.title
Antibiotics
ethz.journal.volume
12
en_US
ethz.journal.issue
8
en_US
ethz.pages.start
1276
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2023-09-04T06:53:56Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-09-06T14:36:09Z
ethz.rosetta.lastUpdated
2024-02-03T03:21:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20High-Performance%20Antibacterial%20Nanostructured%20ZnO%20Microfluidic%20Device%20for%20Controlled%20Bacterial%20Lysis%20and%20DNA%20Release&rft.jtitle=Antibiotics&rft.date=2023-08&rft.volume=12&rft.issue=8&rft.spage=1276&rft.issn=2079-6382&rft.au=Xesfyngi,%20Yvonni&Georgoutsou-Spyridonos,%20Maria&Tripathy,%20Abinash&Milionis,%20Athanasios&Poulikakos,%20Dimos&rft.genre=article&rft_id=info:doi/10.3390/antibiotics12081276&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record