Show simple item record

dc.contributor.author
Borda, Luigi
dc.contributor.author
Gozzi, Noemi
dc.contributor.author
Preatoni, Greta
dc.contributor.author
Valle, Giacomo
dc.contributor.author
Raspopovic, Stanisa
dc.date.accessioned
2023-10-03T09:33:02Z
dc.date.available
2023-10-03T04:27:51Z
dc.date.available
2023-10-03T09:33:02Z
dc.date.issued
2023-09-26
dc.identifier.issn
1743-0003
dc.identifier.other
10.1186/s12984-023-01246-0
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/634666
dc.identifier.doi
10.3929/ethz-b-000634666
dc.description.abstract
Background: The identification of the electrical stimulation parameters for neuromodulation is a subject-specific and time-consuming procedure that presently mostly relies on the expertise of the user (e.g., clinician, experimenter, bioengineer). Since the parameters of stimulation change over time (due to displacement of electrodes, skin status, etc.), patients undergo recurrent, long calibration sessions, along with visits to the clinics, which are inefficient and expensive. To address this issue, we developed an automatized calibration system based on reinforcement learning (RL) allowing for accurate and efficient identification of the peripheral nerve stimulation parameters for somatosensory neuroprostheses. Methods: We developed an RL algorithm to automatically select neurostimulation parameters for restoring sensory feedback with transcutaneous electrical nerve stimulation (TENS). First, the algorithm was trained offline on a dataset comprising 49 subjects. Then, the neurostimulation was then integrated with a graphical user interface (GUI) to create an intuitive AI-based mapping platform enabling the user to autonomously perform the sensation characterization procedure. We assessed the algorithm against the performance of both experienced and naïve and of a brute force algorithm (BFA), on 15 nerves from five subjects. Then, we validated the AI-based platform on six neuropathic nerves affected by distal sensory loss. Results: Our automatized approach demonstrated the ability to find the optimal values of neurostimulation achieving reliable and comfortable elicited sensations. When compared to alternatives, RL outperformed the naïve and BFA, significantly decreasing the time for mapping and the number of delivered stimulation trains, while improving the overall quality. Furthermore, the RL algorithm showed performance comparable to trained experimenters. Finally, we exploited it successfully for eliciting sensory feedback in neuropathic patients. Conclusions: Our findings demonstrated that the AI-based platform based on a RL algorithm can automatically and efficiently calibrate parameters for somatosensory nerve stimulation. This holds promise to avoid experts’ employment in similar scenarios, thanks to the merging between AI and neurotech. Our RL algorithm has the potential to be used in other neuromodulation fields requiring a mapping process of the stimulation parameters. Trial registration: ClinicalTrial.gov (Identifier: NCT04217005)
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
BioMed Central
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Reinforcement learning
en_US
dc.subject
AI
en_US
dc.subject
Automatic calibration
en_US
dc.subject
Electrical stimulation
en_US
dc.subject
Sensory feedback
en_US
dc.subject
TENS
en_US
dc.subject
Neurostimulation
en_US
dc.subject
Neuropathy
en_US
dc.title
Automated calibration of somatosensory stimulation using reinforcement learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Journal of NeuroEngineering and Rehabilitation
ethz.journal.volume
20
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
J. Neuroeng. Rehabilitat.
ethz.pages.start
131
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Restoring natural feelings from missing or damaged peripheral nervous system by model-driven neuroprosthesis
en_US
ethz.grant
Multimodal targeted neurotechnology for gait improvement and neuropathic pain suppression in diabetic neuropathy (MOVEIT)
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09632 - Raspopovic, Stanisa (ehemalig) / Raspopovic, Stanisa (former)
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::09632 - Raspopovic, Stanisa (ehemalig) / Raspopovic, Stanisa (former)
ethz.grant.agreementno
759998
ethz.grant.agreementno
197271
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
H2020
ethz.grant.program
Projekte MINT
ethz.date.deposited
2023-10-03T04:27:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-10-03T09:33:03Z
ethz.rosetta.lastUpdated
2024-02-03T04:20:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automated%20calibration%20of%20somatosensory%20stimulation%20using%20reinforcement%20learning&rft.jtitle=Journal%20of%20NeuroEngineering%20and%20Rehabilitation&rft.date=2023-09-26&rft.volume=20&rft.issue=1&rft.spage=131&rft.issn=1743-0003&rft.au=Borda,%20Luigi&Gozzi,%20Noemi&Preatoni,%20Greta&Valle,%20Giacomo&Raspopovic,%20Stanisa&rft.genre=article&rft_id=info:doi/10.1186/s12984-023-01246-0&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record