Show simple item record

dc.contributor.author
Pan, Yuanxin
dc.contributor.author
Moeller, Gregor
dc.contributor.author
Soja, Benedikt
dc.date.accessioned
2023-10-17T06:25:39Z
dc.date.available
2023-10-16T13:27:22Z
dc.date.available
2023-10-17T06:25:39Z
dc.date.issued
2024-03
dc.identifier.issn
1521-1886
dc.identifier.issn
1080-5370
dc.identifier.other
10.1007/s10291-023-01553-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/636834
dc.identifier.doi
10.3929/ethz-b-000636834
dc.description.abstract
Multipath is the main unmodeled error source hindering high-precision Global Navigation Satellite System data processing. Conventional multipath mitigation methods, such as sidereal filtering (SF) and multipath hemispherical map (MHM), have certain disadvantages: They are either not easy to use or not effective enough for multipath mitigation. In this study, we propose a machine learning (ML)-based multipath mitigation method. Multipath modeling was formulated as a regression task, and the multipath errors were fitted with respect to azimuth and elevation in the spatial domain. We collected 30 days of 1 Hz GPS data to validate the proposed method. In total, five short baselines were formed and multipath errors were extracted from the postfit residuals. ML-based multipath models, as well as observation-domain SF and MHM models, were constructed using 5 days of residuals before the target day and later applied for multipath correction. It was found that the XGBoost (XGB) method outperformed SF and MHM. It achieved the highest residual reduction rates, which were 24.9%, 36.2%, 25.5% and 20.4% for GPS P1, P2, L1 and L2 observations, respectively. After applying the XGB-based multipath corrections, kinematic positioning precisions of 1.6 mm, 1.9 mm and 4.5 mm could be achieved in east, north and up components, respectively, corresponding to 20.0%, 17.4% and 16.7% improvements compared to the original solutions. The effectiveness of the ML-based multipath model was further validated using 30 s sampling data and data from a low-cost device. We conclude that the ML-based multipath mitigation method is effective, easy to use, and can be easily extended by adding auxiliary input features, such as signal-to-noise ratio, during model training.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
GNSS
en_US
dc.subject
Multipath
en_US
dc.subject
Spatial domain
en_US
dc.subject
Machine learning
en_US
dc.subject
XGBoost
en_US
dc.title
Machine learning-based multipath modeling in spatial domain applied to GNSS short baseline processing
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-10-16
ethz.journal.title
GPS Solutions
ethz.journal.volume
28
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
GPS Solut
ethz.pages.start
9
en_US
ethz.size
13 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::09707 - Soja, Benedikt / Soja, Benedikt
ethz.date.deposited
2023-10-16T13:27:22Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-10-17T06:25:41Z
ethz.rosetta.lastUpdated
2024-02-03T05:17:52Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Machine%20learning-based%20multipath%20modeling%20in%20spatial%20domain%20applied%20to%20GNSS%20short%20baseline%20processing&rft.jtitle=GPS%20Solutions&rft.date=2024-03&rft.volume=28&rft.issue=1&rft.spage=9&rft.issn=1521-1886&1080-5370&rft.au=Pan,%20Yuanxin&Moeller,%20Gregor&Soja,%20Benedikt&rft.genre=article&rft_id=info:doi/10.1007/s10291-023-01553-y&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record