Estimation and Inference of Extremal Quantile Treatment Effects for Heavy-Tailed Distributions
dc.contributor.author
Deuber, David
dc.contributor.author
Li, Jinzhou
dc.contributor.author
Engelke, Sebastian
dc.contributor.author
Maathuis, Marloes H.
dc.date.accessioned
2024-09-19T08:34:36Z
dc.date.available
2023-10-24T08:43:54Z
dc.date.available
2023-10-24T13:55:51Z
dc.date.available
2024-09-19T08:34:36Z
dc.date.issued
2024
dc.identifier.issn
0162-1459
dc.identifier.issn
1537-274X
dc.identifier.other
10.1080/01621459.2023.2252141
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/638251
dc.description.abstract
Causal inference for extreme events has many potential applications in fields such as climate science, medicine, and economics. We study the extremal quantile treatment effect of a binary treatment on a continuous, heavy-tailed outcome. Existing methods are limited to the case where the quantile of interest is within the range of the observations. For applications in risk assessment, however, the most relevant cases relate to extremal quantiles that go beyond the data range. We introduce an estimator of the extremal quantile treatment effect that relies on asymptotic tail approximation, and use a new causal Hill estimator for the extreme value indices of potential outcome distributions. We establish asymptotic normality of the estimators and propose a consistent variance estimator to achieve valid statistical inference. We illustrate the performance of our method in simulation studies, and apply it to a real dataset to estimate the extremal quantile treatment effect of college education on wage. Supplementary materials for this article are available online.
en_US
dc.language.iso
en
en_US
dc.publisher
Taylor & Francis
en_US
dc.subject
Asymptomatic normality
en_US
dc.subject
Causality
en_US
dc.subject
Causal Hill estimator
en_US
dc.subject
Extrapolation
en_US
dc.subject
Extreme value theory
en_US
dc.subject
Propensity score
en_US
dc.title
Estimation and Inference of Extremal Quantile Treatment Effects for Heavy-Tailed Distributions
en_US
dc.type
Journal Article
dc.date.published
2023-08-31
ethz.journal.title
Journal of the American Statistical Association
ethz.journal.volume
119
en_US
ethz.journal.issue
547
en_US
ethz.journal.abbreviated
J. Am. Stat. Assoc
ethz.pages.start
2206
en_US
ethz.pages.end
2216
en_US
ethz.identifier.wos
ethz.publication.place
Philadelphia, PA
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2023-10-24T08:44:02Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-09-19T08:34:37Z
ethz.rosetta.lastUpdated
2024-09-19T08:34:37Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Estimation%20and%20Inference%20of%20Extremal%20Quantile%20Treatment%20Effects%20for%20Heavy-Tailed%20Distributions&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.date=2024&rft.volume=119&rft.issue=547&rft.spage=2206&rft.epage=2216&rft.issn=0162-1459&1537-274X&rft.au=Deuber,%20David&Li,%20Jinzhou&Engelke,%20Sebastian&Maathuis,%20Marloes%20H.&rft.genre=article&rft_id=info:doi/10.1080/01621459.2023.2252141&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [132360]