High-throughput synthesis provides data for predicting molecular properties and reaction success
dc.contributor.author
Götz, Julian
dc.contributor.author
Jackl, Moritz K.
dc.contributor.author
Jindakun, Chalupat
dc.contributor.author
Marziale, Alexander N.
dc.contributor.author
André, Jérôme
dc.contributor.author
Gosling, Daniel J.
dc.contributor.author
Springer, Clayton
dc.contributor.author
Palmieri, Marco
dc.contributor.author
Reck, Marcel
dc.contributor.author
Luneau, Alexandre
dc.contributor.author
Brocklehurst, Cara E.
dc.contributor.author
Bode, Jeffrey W.
dc.date.accessioned
2023-11-06T13:23:46Z
dc.date.available
2023-11-06T04:38:38Z
dc.date.available
2023-11-06T13:23:46Z
dc.date.issued
2023-10-27
dc.identifier.issn
2375-2548
dc.identifier.other
10.1126/sciadv.adj2314
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/640106
dc.identifier.doi
10.3929/ethz-b-000640106
dc.description.abstract
The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions. Together, the data generated allow rational predictions of the synthesizability of stereochemically diverse C-substituted N-saturated heterocycles with deep learning and reveal unexpected trends on the relationship between structure and properties. This study exemplifies how organic chemists can exploit state-of-the-art technologies to markedly increase throughput and confidence in the preparation of drug-like molecules.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
High-throughput synthesis provides data for predicting molecular properties and reaction success
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
ethz.journal.title
Science Advances
ethz.journal.volume
9
en_US
ethz.journal.issue
43
en_US
ethz.journal.abbreviated
Sci Adv
ethz.pages.start
eadj2314
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02514 - Laboratorium für Organische Chemie / Laboratory of Organic Chemistry
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02514 - Laboratorium für Organische Chemie / Laboratory of Organic Chemistry::03861 - Bode, Jeffrey W. / Bode, Jeffrey W.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02514 - Laboratorium für Organische Chemie / Laboratory of Organic Chemistry::03861 - Bode, Jeffrey W. / Bode, Jeffrey W.
ethz.date.deposited
2023-11-06T04:38:39Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-11-06T13:23:47Z
ethz.rosetta.lastUpdated
2024-02-03T05:58:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=High-throughput%20synthesis%20provides%20data%20for%20predicting%20molecular%20properties%20and%20reaction%20success&rft.jtitle=Science%20Advances&rft.date=2023-10-27&rft.volume=9&rft.issue=43&rft.spage=eadj2314&rft.issn=2375-2548&rft.au=G%C3%B6tz,%20Julian&Jackl,%20Moritz%20K.&Jindakun,%20Chalupat&Marziale,%20Alexander%20N.&Andr%C3%A9,%20J%C3%A9r%C3%B4me&rft.genre=article&rft_id=info:doi/10.1126/sciadv.adj2314&
Files in this item
Publication type
-
Journal Article [132320]