Quantifying Markov Chain Monte Carlo Exploration of Tumour Progression Tree Spaces
Initialisation Strategies, Convergence Diagnostics & Multi-modalities
dc.contributor.author
Köhn, Gordon
dc.contributor.supervisor
Beerenwinkel, Niko
dc.contributor.supervisor
Czyż, Paweł
dc.date.accessioned
2023-11-15T08:08:35Z
dc.date.available
2023-11-14T14:03:40Z
dc.date.available
2023-11-15T08:08:35Z
dc.date.issued
2023-10-23
dc.identifier.uri
http://hdl.handle.net/20.500.11850/642011
dc.identifier.doi
10.3929/ethz-b-000642011
dc.description.abstract
Understanding the mutational intra-tumour heterogeneity within tumours is crucial to developing effective personalised cancer therapies. Bayesian Markov chain Monte Carlo (MCMC) sampling schemes have proven successful and trusted in reconstructing tumour progression histories, particularly mutation trees. To understand the effectiveness of mutation tree MCMC methods and their required runtimes, it is crucial to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution.
We quantify the MCMC exploration of the mutation tree space for the landmark inference scheme SCITE using tree similarity measures. In this simulation study, the tree similarities map features informative of a tumour’s clonal expansion from the mutation tree space to a scalar space, allowing the study of the MCMC exploration. Quantification of the exploration is provided by the novel application of convergence diagnostics established in continuous space to the discrete space of mutation trees via tree similarities.
Consequently, we estimate the required runtime of SCITE for simulated data, which may imply significantly reduced runtimes for real-world datasets.
Further, we find the dependence of the initial state of the MCMC to vanish quickly. We recommend trialling the significant reduction of the warm-up period for real-world datasets, implying another reduction in required runtime. In the process of exploring initialisation strategies, we validated the performance of the fast heuristic inference method HUNTRESS.
Lastly, we investigate the topology of the Bayesian tree posterior, which is thought to contain multi-modalities potentially. For simulated data, we did not find evidence for any multi-modalities justifying the design of SCITE as a single-chain MCMC scheme.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Cancer genomics
en_US
dc.subject
Tumor progression
en_US
dc.subject
Markov chain Monte Carlo (MCMC)
en_US
dc.subject
Convergence diagnostics
en_US
dc.subject
Bayesian Inference
en_US
dc.subject
trees (mathematics)
en_US
dc.title
Quantifying Markov Chain Monte Carlo Exploration of Tumour Progression Tree Spaces
en_US
dc.type
Master Thesis
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.title.subtitle
Initialisation Strategies, Convergence Diagnostics & Multi-modalities
en_US
ethz.size
62 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.code.ddc
DDC - DDC::5 - Science::500 - Natural sciences
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.code.ddc
DDC - DDC::5 - Science::570 - Life sciences
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::600 - Technology (applied sciences)
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02219 - ETH AI Center / ETH AI Center
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03790 - Beerenwinkel, Niko / Beerenwinkel, Niko
en_US
ethz.date.deposited
2023-11-14T14:03:41Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-11-15T08:08:36Z
ethz.rosetta.lastUpdated
2024-02-03T06:30:43Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantifying%20Markov%20Chain%20Monte%20Carlo%20Exploration%20of%20Tumour%20Progression%20Tree%20Spaces&rft.date=2023-10-23&rft.au=K%C3%B6hn,%20Gordon&rft.genre=unknown&rft.btitle=Quantifying%20Markov%20Chain%20Monte%20Carlo%20Exploration%20of%20Tumour%20Progression%20Tree%20Spaces
Files in this item
Publication type
-
Master Thesis [2068]