Local fluctuations in cavity control of ferroelectricity
dc.contributor.author
Curtis, Jonathan B.
dc.contributor.author
Michael, Marios H.
dc.contributor.author
Demler, Eugene
dc.date.accessioned
2023-12-04T14:57:41Z
dc.date.available
2023-11-27T06:01:34Z
dc.date.available
2023-12-04T14:57:41Z
dc.date.issued
2023-11
dc.identifier.issn
2643-1564
dc.identifier.other
10.1103/PhysRevResearch.5.043118
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/643782
dc.identifier.doi
10.3929/ethz-b-000643782
dc.description.abstract
Control of quantum matter through resonant electromagnetic cavities is a promising route towards establishing control over material phases and functionalities. Quantum paraelectric insulators - materials that are nearly ferroelectric - are particularly promising candidate systems for this purpose since they have strongly fluctuating collective modes that directly couple to the electric field. In this work, we explore this possibility in a system comprised of a quantum paraelectric sandwiched between two high-quality metal mirrors, realizing a Fabry-Perot-type cavity. By developing a full multimode, continuum description we are able to study the effect of the cavity in a spatially resolved way for a variety of system sizes and temperatures. Surprisingly, we find that once a continuum of transverse modes is included the cavity ends up suppressing ferroelectric correlations. This effect arises from the screening out of transverse photons at the cavity boundaries and, as a result, is confined to the surface of the paraelectric sample. We also explore the temperature dependence of this effect and find it vanishes at high temperatures, indicating it is a purely quantum mechanical effect. We connect our result to calculations of Casimir and Van der Waals forces, which we argue are closely related to the dipolar fluctuations in the quantum paraelectric. Our results are based on a general formalism and are expected to be widely applicable, paving the way towards studies of the quantum electrodynamics of heterostructures featuring multiple materials and phases.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Local fluctuations in cavity control of ferroelectricity
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-11-06
ethz.journal.title
Physical Review Research
ethz.journal.volume
5
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
Phys. Rev. Res.
ethz.pages.start
043118
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Non-perturbative approaches to strongly correlated many-body systems
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::09753 - Demler, Eugene / Demler, Eugene
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::09753 - Demler, Eugene / Demler, Eugene
ethz.grant.agreementno
212899
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2023-11-27T06:01:34Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-12-04T14:57:42Z
ethz.rosetta.lastUpdated
2024-02-03T07:50:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Local%20fluctuations%20in%20cavity%20control%20of%20ferroelectricity&rft.jtitle=Physical%20Review%20Research&rft.date=2023-11&rft.volume=5&rft.issue=4&rft.spage=043118&rft.issn=2643-1564&rft.au=Curtis,%20Jonathan%20B.&Michael,%20Marios%20H.&Demler,%20Eugene&rft.genre=article&rft_id=info:doi/10.1103/PhysRevResearch.5.043118&
Files in this item
Publication type
-
Journal Article [132137]