Show simple item record

dc.contributor.author
Basin, David
dc.contributor.author
Mödersheim, Sebastian
dc.contributor.author
Viganò, Luca
dc.date.accessioned
2017-08-14T09:48:54Z
dc.date.available
2017-06-10T14:43:07Z
dc.date.available
2017-08-14T09:48:54Z
dc.date.issued
2005
dc.identifier.uri
http://hdl.handle.net/20.500.11850/64502
dc.identifier.doi
10.3929/ethz-a-006787620
dc.description.abstract
Many security protocols fundamentally depend on the algebraic properties of cryptographic operators. It is however difficult to handle these properties when formally analyzing protocols, since basic problems like the equality of terms that represent cryptographic messages are undecidable, even for relatively simple algebraic theories. We present a framework for security protocol analysis that can handle algebraic properties of cryptographic operators in a uniform and modular way. Our framework is based on two ideas: the use of modular rewriting to formalize a generalized equational deduction problem for the Dolev- Yao intruder, and the introduction of two parameters that control the complexity of the equational unification problems that arise during protocol analysis by bounding the depth of message terms and the operations that the intruder can perform when analyzing messages.We motivate the different restrictions made in our model by highlighting different ways in which undecidability arises when incorporating algebraic properties of cryptographic operators into formal protocol analysis.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
ETH, Department of Computer Science
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
NETWORK PROTOCOLS + COMMUNICATION PROTOCOLS (COMPUTER SYSTEMS)
en_US
dc.subject
CRYPTOGRAPHY (INFORMATION THEORY)
en_US
dc.subject
NETZWERKPROTOKOLLE + KOMMUNIKATIONSPROTOKOLLE (COMPUTERSYSTEME)
en_US
dc.subject
KRYPTOGRAPHIE (INFORMATIONSTHEORIE)
en_US
dc.title
Algebraic Intruder Deductions
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
Technical Report / ETH Zurich, Department of Computer Science
ethz.journal.volume
485
en_US
ethz.size
28 p.
en_US
ethz.version.edition
Extended Version
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.code.ddc
DDC - DDC::5 - Science::510 - Mathematics
en_US
ethz.notes
Technical Reports D-INFK.
en_US
ethz.identifier.nebis
006787620
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02660 - Institut für Informationssicherheit / Institute of Information Security::03634 - Basin, David / Basin, David
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02660 - Institut für Informationssicherheit / Institute of Information Security::03634 - Basin, David / Basin, David
ethz.date.deposited
2017-06-10T14:45:47Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp59366b173102730092
ethz.identifier.importid
imp59365069e1cfe29386
ethz.ecolpid
eth:4886
ethz.ecitpid
pub:102486
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-18T20:26:05Z
ethz.rosetta.lastUpdated
2023-02-06T14:28:10Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Algebraic%20Intruder%20Deductions&rft.jtitle=Technical%20Report%20/%20ETH%20Zurich,%20Department%20of%20Computer%20Science&rft.date=2005&rft.volume=485&rft.au=Basin,%20David&M%C3%B6dersheim,%20Sebastian&Vigan%C3%B2,%20Luca&rft.genre=report&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record