Large-Scale Inference of Geo-Referenced Power Distribution Grids Using Open Data
dc.contributor.author
Oneto, Alfredo Ernesto
dc.contributor.author
Gjorgiev, Blazhe
dc.contributor.author
Tettamanti, Filippo
dc.contributor.author
Sansavini, Giovanni
dc.date.accessioned
2024-02-21T12:41:19Z
dc.date.available
2023-12-07T13:10:44Z
dc.date.available
2024-02-19T14:02:30Z
dc.date.available
2024-02-21T12:41:19Z
dc.date.issued
2023-12-02
dc.identifier.other
10.36227/techrxiv.24607662
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/646111
dc.identifier.doi
10.3929/ethz-b-000646111
dc.description.abstract
Power distribution grids host an increasing amount of distributed renewable generators, electric vehicles, and heat pumps worldwide. Distribution grids, however, were not designed with the goal of incorporating large shares of these technologies. These soaring challenges demand accurate and realistic grid models to assess the need for operation strategies and reinforcements that ensure reliable and economic management. Nevertheless, real models are often unavailable due to privacy and security concerns or a lack of digitized data from distribution system operators. To address this issue, we present a framework for large-scale inference of geo-referenced low- and medium-voltage grid models using publicly accessible information on power demand and transport infrastructure. First, we develop a clustering algorithm, which detects load areas served by distribution grids. Then, we obtain the graphical grid layout, i.e., a graph with the street and pathway geometries and the load point connections inside the load area. Next, we introduce a selection method for line types that assigns cost-effective conductors to grid lines while ensuring operational constraints. We demonstrate the effectiveness of our approach by inferring all the low- and medium-voltage infrastructure in Switzerland. Remarkably, the inferred grids present overall power requirements and line lengths statistically aligned with reference grids.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Geo-referenced grids
en_US
dc.subject
Power distribution
en_US
dc.subject
Clustering methods
en_US
dc.subject
Data models
en_US
dc.subject
Load modeling
en_US
dc.title
Large-Scale Inference of Geo-Referenced Power Distribution Grids Using Open Data
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
TechRxiv
ethz.size
11 p.
en_US
ethz.version.edition
v1
en_US
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.
en_US
ethz.date.deposited
2023-12-07T13:10:44Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-02-19T14:02:32Z
ethz.rosetta.lastUpdated
2024-02-19T14:02:32Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Large-Scale%20Inference%20of%20Geo-Referenced%20Power%20Distribution%20Grids%20Using%20Open%20Data&rft.jtitle=TechRxiv&rft.date=2023-12-02&rft.au=Oneto,%20Alfredo%20Ernesto&Gjorgiev,%20Blazhe&Tettamanti,%20Filippo&Sansavini,%20Giovanni&rft.genre=preprint&rft_id=info:doi/10.36227/techrxiv.24607662&
Files in this item
Publication type
-
Working Paper [5828]