Feature identification in complex fluid flows by convolutional neural networks
dc.contributor.author
Wen, Shizheng
dc.contributor.author
Lee, Michael W.
dc.contributor.author
Kruger Bastos, Kai M.
dc.contributor.author
Eldridge-Allegra, Ian K.
dc.contributor.author
Dowell, Earl H.
dc.date.accessioned
2023-12-19T10:34:58Z
dc.date.available
2023-12-10T08:52:39Z
dc.date.available
2023-12-19T10:34:58Z
dc.date.issued
2023-11
dc.identifier.issn
2589-0336
dc.identifier.issn
2095-0349
dc.identifier.other
10.1016/j.taml.2023.100482
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/646541
dc.identifier.doi
10.3929/ethz-b-000646541
dc.description.abstract
Recent advancements have established machine learning's utility in predicting nonlinear fluid dynamics, with predictive accuracy being a central motivation for employing neural networks. However, the pattern recognition central to the networks function is equally valuable for enhancing our dynamical insight into the complex fluid dynamics. In this paper, a single-layer convolutional neural network (CNN) was trained to recognize three qualitatively different subsonic buffet flows (periodic, quasi-periodic and chaotic) over a high-incidence airfoil, and a near-perfect accuracy was obtained with only a small training dataset. The convolutional kernels and corresponding feature maps, developed by the model with no temporal information provided, identified large-scale coherent structures in agreement with those known to be associated with buffet flows. Sensitivity to hyperparameters including network architecture and convolutional kernel size was also explored. The coherent structures identified by these models enhance our dynamical understanding of subsonic buffet over high-incidence airfoils over a wide range of Reynolds numbers.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Subsonic buffet flows
en_US
dc.subject
Feature identification
en_US
dc.subject
Convolutional neural network
en_US
dc.subject
Long-short term memory
en_US
dc.title
Feature identification in complex fluid flows by convolutional neural networks
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2023-11-14
ethz.journal.title
Theoretical and Applied Mechanics Letters
ethz.journal.volume
13
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
100482
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2023-12-10T08:52:41Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-12-19T10:35:00Z
ethz.rosetta.lastUpdated
2024-02-03T08:07:11Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Feature%20identification%20in%20complex%20fluid%20flows%20by%20convolutional%20neural%20networks&rft.jtitle=Theoretical%20and%20Applied%20Mechanics%20Letters&rft.date=2023-11&rft.volume=13&rft.issue=6&rft.spage=100482&rft.issn=2589-0336&2095-0349&rft.au=Wen,%20Shizheng&Lee,%20Michael%20W.&Kruger%20Bastos,%20Kai%20M.&Eldridge-Allegra,%20Ian%20K.&Dowell,%20Earl%20H.&rft.genre=article&rft_id=info:doi/10.1016/j.taml.2023.100482&
Files in this item
Publication type
-
Journal Article [130547]