Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals
dc.contributor.author
Nykänen, Anton
dc.contributor.author
Miller, Aaron
dc.contributor.author
Talarico, Walter
dc.contributor.author
Knecht, Stefan
dc.contributor.author
Kovyrshin, Arseny
dc.contributor.author
Skogh, Mårten
dc.contributor.author
Tornberg, Lars
dc.contributor.author
Broo, Anders
dc.contributor.author
Mensa, Stefano
dc.contributor.author
Symons, Benjamin C.B.
dc.contributor.author
Sahin, Emre
dc.contributor.author
Crain, Jason
dc.contributor.author
Tavernelli, Ivano
dc.contributor.author
Pavošević, Fabijan
dc.date.accessioned
2024-01-19T11:01:33Z
dc.date.available
2024-01-17T09:39:08Z
dc.date.available
2024-01-19T11:01:33Z
dc.date.issued
2023-12-26
dc.identifier.issn
1549-9618
dc.identifier.issn
1549-9626
dc.identifier.other
10.1021/acs.jctc.3c01091
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/653383
dc.description.abstract
Nuclear quantum effects such as zero-point energy and hydrogen tunneling play a central role in many biological and chemical processes. The nuclear-electronic orbital (NEO) approach captures these effects by treating selected nuclei quantum mechanically on the same footing as electrons. On classical computers, the resources required for an exact solution of NEO-based models grow exponentially with system size. By contrast, quantum computers offer a means of solving this problem with polynomial scaling. However, due to the limitations of current quantum devices, NEO simulations are confined to the smallest systems described by minimal basis sets, whereas realistic simulations beyond the Born-Oppenheimer approximation require more sophisticated basis sets. For this purpose, we herein extend a hardware-efficient ADAPT-VQE method to the NEO framework in the frozen natural orbital (FNO) basis. We demonstrate on H2 and D2 molecules that the NEO-FNO-ADAPT-VQE method reduces the CNOT count by several orders of magnitude relative to the NEO unitary coupled cluster method with singles and doubles while maintaining the desired accuracy. This extreme reduction in the CNOT gate count is sufficient to permit practical computations employing the NEO method─an important step toward accurate simulations involving nonclassical nuclei and non-Born-Oppenheimer effects on near-term quantum devices. We further show that the method can capture isotope effects, and we demonstrate that inclusion of correlation energy systematically improves the prediction of difference in the zero-point energy (ΔZPE) between isotopes.
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.title
Toward Accurate Post-Born-Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals
en_US
dc.type
Journal Article
dc.date.published
2023-11-11
ethz.journal.title
Journal of Chemical Theory and Computation
ethz.journal.volume
19
en_US
ethz.journal.issue
24
en_US
ethz.journal.abbreviated
J Chem Theory Comput
ethz.pages.start
9269
en_US
ethz.pages.end
9277
en_US
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.date.deposited
2024-01-17T09:39:08Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-01-19T11:01:34Z
ethz.rosetta.lastUpdated
2024-01-19T11:01:34Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Toward%20Accurate%20Post-Born-Oppenheimer%20Molecular%20Simulations%20on%20Quantum%20Computers:%20An%20Adaptive%20Variational%20Eigensolver%20with%20Nuclear-Electronic%2&rft.jtitle=Journal%20of%20Chemical%20Theory%20and%20Computation&rft.date=2023-12-26&rft.volume=19&rft.issue=24&rft.spage=9269&rft.epage=9277&rft.issn=1549-9618&1549-9626&rft.au=Nyk%C3%A4nen,%20Anton&Miller,%20Aaron&Talarico,%20Walter&Knecht,%20Stefan&Kovyrshin,%20Arseny&rft.genre=article&rft_id=info:doi/10.1021/acs.jctc.3c01091&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [133128]