Show simple item record

dc.contributor.author
Zhou, Tianfei
dc.contributor.author
Konukoglu, Ender
dc.date.accessioned
2024-02-21T11:43:01Z
dc.date.available
2024-01-26T08:28:38Z
dc.date.available
2024-02-21T11:43:01Z
dc.date.issued
2023
dc.identifier.uri
http://hdl.handle.net/20.500.11850/655503
dc.description.abstract
Federated learning is a distributed paradigm that allows multiple parties to collaboratively train deep models without exchanging the raw data. However, the data distribution among clients is naturally non-i.i.d., which leads to severe degradation of the learnt model. The primary goal of this paper is to develop a robust federated learning algorithm to address feature shift in clients’ samples, which can be caused by various factors, e.g., acquisition differences in medical imaging. To reach this goal, we propose FedFA to tackle federated learning from a dis- tinct perspective of federated feature augmentation. FedFA is based on a major insight that each client’s data distribution can be characterized by statistics (i.e., mean and standard deviation) of latent features; and it is likely to manipulate these local statistics globally, i.e., based on information in the entire federation, to let clients have a better sense of the underlying distribution and therefore alleviate local data bias. Based on this insight, we propose to augment each local feature statistic probabilistically based on a normal distribution, whose mean is the original statistic and variance quantifies the augmentation scope. Key to our approach is the determination of a meaningful Gaussian variance, which is accomplished by taking into account not only biased data of each individual client, but also underlying feature statistics characterized by all participating clients. We offer both theoretical and empirical justifications to verify the effectiveness of FedFA. Our code is available at https://github.com/tfzhou/FedFA.
en_US
dc.language.iso
en
en_US
dc.publisher
OpenReview
en_US
dc.subject
federated learning
en_US
dc.subject
feature augmentation
en_US
dc.title
FedFA: Federated Feature Augmentation
en_US
dc.type
Conference Paper
ethz.book.title
The Eleventh International Conference on Learning Representations (ICLR 2023)
en_US
ethz.size
21 p.
en_US
ethz.event
11th International Conference on Learning Representations (ICLR 2023)
en_US
ethz.event.location
Kigali, Rwanda
en_US
ethz.event.date
May 1-5, 2023
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09579 - Konukoglu, Ender / Konukoglu, Ender
en_US
ethz.identifier.url
https://iclr.cc/virtual/2023/poster/11448
ethz.identifier.url
https://openreview.net/forum?id=U9yFP90jU0
ethz.date.deposited
2024-01-26T08:28:38Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-02-21T11:43:02Z
ethz.rosetta.lastUpdated
2024-02-21T11:43:02Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=FedFA:%20Federated%20Feature%20Augmentation&rft.date=2023&rft.au=Zhou,%20Tianfei&Konukoglu,%20Ender&rft.genre=proceeding&rft.btitle=The%20Eleventh%20International%20Conference%20on%20Learning%20Representations%20(ICLR%202023)
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record