Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware
dc.contributor.author
Baruzzi, Valentina
dc.contributor.author
Indiveri, Giacomo
dc.contributor.author
Sabatini, Silvio P.
dc.date.accessioned
2024-02-19T08:57:22Z
dc.date.available
2024-01-26T14:16:11Z
dc.date.available
2024-02-19T08:57:22Z
dc.date.issued
2023-10-10
dc.identifier.issn
2693-5015
dc.identifier.other
10.21203/rs.3.rs-3412574/v1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/655678
dc.identifier.doi
10.3929/ethz-b-000655678
dc.description.abstract
Mixed signal analog/digital neuromorphic circuits represent an ideal medium for reproducing the dynamics of biological neural systems in real-time with bio-physically realistic dynamics. However, similar to their biological counterparts, these circuits have limited resolution and are affected by a high degree of variability. Considering this, we developed a recurrent spiking neural network that implements a faithful model of the retinocortical visual pathway to reliably produce Gabor-like receptive fields tuned to visual stimuli with specific orientation and spatial frequency properties. Specifically, we developed a neuromorphic visual system comprising a Dynamic Vision Sensor that emulates the transient pathway of real retinas and a mixed-signal Dynamic Neuromorphic Asynchronous Processor with adaptive exponential integrate-and-fire neurons and dynamic synapses and mapped the recurrent network model on it to produces the desired orientation and spatial frequency tuning responses. Compared to alternative feed-forward schemes, the model developed gives rise to robust highly structured Gabor-like receptive fields of any phase symmetry, optimizing the hardware resources available in terms of synaptic connections. We present experimental results using both synthetic and natural images validating the model with its hardware implementations.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Research Square
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Recurrent models of orientation selectivity enable robust early-vision processing in mixed-signal neuromorphic hardware
en_US
dc.type
Working Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Research Square
ethz.size
21 p.
en_US
ethz.publication.place
Durham, NC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
en_US
ethz.date.deposited
2024-01-26T14:16:12Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-02-19T08:57:24Z
ethz.rosetta.lastUpdated
2024-02-19T08:57:24Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Recurrent%20models%20of%20orientation%20selectivity%20enable%20robust%20early-vision%20%20processing%20in%20mixed-signal%20neuromorphic%20hardware&rft.jtitle=Research%20Square&rft.date=2023-10-10&rft.issn=2693-5015&rft.au=Baruzzi,%20Valentina&Indiveri,%20Giacomo&Sabatini,%20Silvio%20P.&rft.genre=preprint&rft_id=info:doi/10.21203/rs.3.rs-3412574/v1&
Files in this item
Publication type
-
Working Paper [5828]