Robust Knowledge Transfer in Tiered Reinforcement Learning
dc.contributor.author
Huang, Jiawei
dc.contributor.author
He, Niao
dc.contributor.editor
Oh, Alice
dc.contributor.editor
Naumann, Tristan
dc.contributor.editor
Globerson, Amir
dc.contributor.editor
Saenko, Kate
dc.contributor.editor
Hardt, Moritz
dc.contributor.editor
Levine, Sergey
dc.date.accessioned
2024-07-15T08:37:08Z
dc.date.available
2024-01-27T08:48:48Z
dc.date.available
2024-01-30T15:28:15Z
dc.date.available
2024-07-15T08:37:08Z
dc.date.issued
2024-07
dc.identifier.isbn
978-1-7138-9992-1
dc.identifier.uri
http://hdl.handle.net/20.500.11850/655723
dc.description.abstract
In this paper, we study the Tiered Reinforcement Learning setting, a parallel transfer learning framework, where the goal is to transfer knowledge from the low-tier (source) task to the high-tier (target) task to reduce the exploration risk of the latter while solving the two tasks in parallel. Unlike previous work, we do not assume the low-tier and high-tier tasks share the same dynamics or reward functions, and focus on robust knowledge transfer without prior knowledge on the task similarity. We identify a natural and necessary condition called the
Optimal Value Dominance'' for our objective. Under this condition, we propose novel online learning algorithms such that, for the high-tier task, it can achieve constant regret on partial states depending on the task similarity and retain near-optimal regret when the two tasks are dissimilar, while for the low-tier task, it can keep near-optimal without making sacrifice. Moreover, we further study the setting with multiple low-tier tasks, and propose a novel transfer source selection mechanism, which can ensemble the information from all low-tier tasks and allow provable benefits on a much larger state-action space.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Robust Knowledge Transfer in Tiered Reinforcement Learning
en_US
dc.type
Conference Paper
ethz.book.title
Advances in Neural Information Processing Systems 36
en_US
ethz.pages.start
52073
en_US
ethz.pages.end
52085
en_US
ethz.event
37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
December 10-16, 2023
en_US
ethz.notes
Poster presentation on December 12, 2023.
en_US
ethz.grant
RING: Robust Intelligence with Nonconvex Games
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.identifier.url
https://papers.nips.cc/paper_files/paper/2023/hash/a39ab46bf619ada0e90ceed846648a81-Abstract-Conference.html
ethz.identifier.url
https://neurips.cc/virtual/2023/poster/73015
ethz.grant.agreementno
207343
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isNewVersionOf
10.48550/arXiv.2302.05534
ethz.relation.isNewVersionOf
https://openreview.net/forum?id=1WMdoiVMov
ethz.date.deposited
2024-01-27T08:48:48Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-07-15T08:37:13Z
ethz.rosetta.lastUpdated
2024-07-15T08:37:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Robust%20Knowledge%20Transfer%20in%20Tiered%20Reinforcement%20Learning&rft.date=2024-07&rft.spage=52073&rft.epage=52085&rft.au=Huang,%20Jiawei&He,%20Niao&rft.isbn=978-1-7138-9992-1&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2036
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35822]