Show simple item record

dc.contributor.author
Huang, Jiawei
dc.contributor.author
He, Niao
dc.contributor.editor
Oh, Alice
dc.contributor.editor
Naumann, Tristan
dc.contributor.editor
Globerson, Amir
dc.contributor.editor
Saenko, Kate
dc.contributor.editor
Hardt, Moritz
dc.contributor.editor
Levine, Sergey
dc.date.accessioned
2024-07-15T08:37:08Z
dc.date.available
2024-01-27T08:48:48Z
dc.date.available
2024-01-30T15:28:15Z
dc.date.available
2024-07-15T08:37:08Z
dc.date.issued
2024-07
dc.identifier.isbn
978-1-7138-9992-1
dc.identifier.uri
http://hdl.handle.net/20.500.11850/655723
dc.description.abstract
In this paper, we study the Tiered Reinforcement Learning setting, a parallel transfer learning framework, where the goal is to transfer knowledge from the low-tier (source) task to the high-tier (target) task to reduce the exploration risk of the latter while solving the two tasks in parallel. Unlike previous work, we do not assume the low-tier and high-tier tasks share the same dynamics or reward functions, and focus on robust knowledge transfer without prior knowledge on the task similarity. We identify a natural and necessary condition called the Optimal Value Dominance'' for our objective. Under this condition, we propose novel online learning algorithms such that, for the high-tier task, it can achieve constant regret on partial states depending on the task similarity and retain near-optimal regret when the two tasks are dissimilar, while for the low-tier task, it can keep near-optimal without making sacrifice. Moreover, we further study the setting with multiple low-tier tasks, and propose a novel transfer source selection mechanism, which can ensemble the information from all low-tier tasks and allow provable benefits on a much larger state-action space.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Robust Knowledge Transfer in Tiered Reinforcement Learning
en_US
dc.type
Conference Paper
ethz.book.title
Advances in Neural Information Processing Systems 36
en_US
ethz.pages.start
52073
en_US
ethz.pages.end
52085
en_US
ethz.event
37th Annual Conference on Neural Information Processing Systems (NeurIPS 2023)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
December 10-16, 2023
en_US
ethz.notes
Poster presentation on December 12, 2023.
en_US
ethz.grant
RING: Robust Intelligence with Nonconvex Games
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::09729 - He, Niao / He, Niao
en_US
ethz.identifier.url
https://papers.nips.cc/paper_files/paper/2023/hash/a39ab46bf619ada0e90ceed846648a81-Abstract-Conference.html
ethz.identifier.url
https://neurips.cc/virtual/2023/poster/73015
ethz.grant.agreementno
207343
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isNewVersionOf
10.48550/arXiv.2302.05534
ethz.relation.isNewVersionOf
https://openreview.net/forum?id=1WMdoiVMov
ethz.date.deposited
2024-01-27T08:48:48Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-07-15T08:37:13Z
ethz.rosetta.lastUpdated
2024-07-15T08:37:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Robust%20Knowledge%20Transfer%20in%20Tiered%20Reinforcement%20Learning&rft.date=2024-07&rft.spage=52073&rft.epage=52085&rft.au=Huang,%20Jiawei&He,%20Niao&rft.isbn=978-1-7138-9992-1&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2036
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record