Model-based Causal Bayesian Optimization
dc.contributor.author
Sussex, Scott
dc.contributor.author
Makarova, Anastasiia
dc.contributor.author
Krause, Andreas
dc.date.accessioned
2024-02-21T11:36:47Z
dc.date.available
2024-01-31T09:39:55Z
dc.date.available
2024-02-21T11:36:47Z
dc.date.issued
2023
dc.identifier.uri
http://hdl.handle.net/20.500.11850/656757
dc.description.abstract
How should we intervene on an unknown structural equation model to maximize a downstream variable of interest? This setting, also known as causal Bayesian optimization (CBO), has important applications in medicine, ecology, and manufacturing. Standard Bayesian optimization algorithms fail to effectively leverage the underlying causal structure. Existing CBO approaches assume noiseless measurements and do not come with guarantees. We propose the {\em model-based causal Bayesian optimization algorithm (MCBO)} that learns a full system model instead of only modeling intervention-reward pairs. MCBO propagates epistemic uncertainty about the causal mechanisms through the graph and trades off exploration and exploitation via the optimism principle. We bound its cumulative regret, and obtain the first non-asymptotic bounds for CBO. Unlike in standard Bayesian optimization, our acquisition function cannot be evaluated in closed form, so we show how the reparameterization trick can be used to apply gradient-based optimizers. The resulting practical implementation of MCBO compares favorably with state-of-the-art approaches empirically.
en_US
dc.language.iso
en
en_US
dc.publisher
OpenReview
en_US
dc.subject
causal inference
en_US
dc.subject
bayesian optimization
en_US
dc.title
Model-based Causal Bayesian Optimization
en_US
dc.type
Conference Paper
ethz.book.title
The Eleventh International Conference on Learning Representations (ICLR 2023)
en_US
ethz.size
24 p.
en_US
ethz.event
11th International Conference on Learning Representations (ICLR 2023)
en_US
ethz.event.location
Kigali, Rwanda
en_US
ethz.event.date
May 1-5, 2023
en_US
ethz.grant
NCCR Automation (phase I)
en_US
ethz.grant
Reliable Data-Driven Decision Making in Cyber-Physical Systems
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03908 - Krause, Andreas / Krause, Andreas
en_US
ethz.identifier.url
https://iclr.cc/virtual/2023/oral/14239
ethz.identifier.url
https://openreview.net/forum?id=Vk-34OQ7rFo
ethz.grant.agreementno
180545
ethz.grant.agreementno
815943
ethz.grant.agreementno
180545
ethz.grant.agreementno
815943
ethz.grant.agreementno
180545
ethz.grant.agreementno
815943
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
H2020
ethz.grant.program
NCCR full proposal
ethz.relation.isNewVersionOf
20.500.11850/586741
ethz.date.deposited
2024-01-31T09:39:55Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-02-21T11:36:50Z
ethz.rosetta.lastUpdated
2024-02-21T11:36:50Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Model-based%20Causal%20Bayesian%20Optimization&rft.date=2023&rft.au=Sussex,%20Scott&Makarova,%20Anastasiia&Krause,%20Andreas&rft.genre=proceeding&rft.btitle=The%20Eleventh%20International%20Conference%20on%20Learning%20Representations%20(ICLR%202023)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35278]