Open access
Date
2024-07Type
- Journal Article
Abstract
The article presents a mathematical model that simulates the elastic and plastic behaviour of discrete systems representing isotropic materials. The systems consist of one lattice of nodes connected by edges and a second lattice with nodes placed at the centres of the existing edges. The derivation is based on the assumption that the kinematics of the second lattice is induced by the kinematics of the first, and uses stored energies in edges of both lattices to derive a edge forces in the first lattice. This leads to a non-linear system of algebraic equations describing elasticity and plasticity in lattices. A numerical solution to the non-linear system is proposed by providing a matrix formulation necessary for software implementation. An illustrative example is given to justify the formulation and demonstrate the system behaviour. Show more
Permanent link
https://doi.org/10.3929/ethz-b-000660137Publication status
publishedExternal links
Journal / series
Journal of Computational and Applied MathematicsVolume
Pages / Article No.
Publisher
ElsevierSubject
Lattice model; Elasticity; Plasticity; Energy; Non-linear systemFunding
180545 - NCCR Automation (phase I) (SNF)
More
Show all metadata