Streamlined, single-step non-viral CRISPR-Cas9 knockout strategy enhances gene editing efficiency in primary human chondrocyte populations
dc.contributor.author
Ponta, Simone
dc.contributor.author
Bonato, Angela
dc.contributor.author
Neidenbach, Philipp
dc.contributor.author
Bruhin, Valentino F.
dc.contributor.author
Laurent, Alexis
dc.contributor.author
Applegate, Lee Ann
dc.contributor.author
Zenobi-Wong, Marcy
dc.contributor.author
Barreto, Goncalo
dc.date.accessioned
2024-03-22T10:51:10Z
dc.date.available
2024-03-22T07:48:06Z
dc.date.available
2024-03-22T10:51:10Z
dc.date.issued
2024-03-11
dc.identifier.issn
1465-9905
dc.identifier.issn
1465-9913
dc.identifier.issn
1478-6362
dc.identifier.issn
1478-6354
dc.identifier.other
10.1186/s13075-024-03294-w
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/665564
dc.identifier.doi
10.3929/ethz-b-000665564
dc.description.abstract
Background
CRISPR-Cas9-based genome engineering represents a powerful therapeutic tool for cartilage tissue engineering and for understanding molecular pathways driving cartilage diseases. However, primary chondrocytes are difficult to transfect and rapidly dedifferentiate during monolayer (2D) cell culture, making the lengthy expansion of a single-cell-derived edited clonal population not feasible. For this reason, functional genetics studies focused on cartilage and rheumatic diseases have long been carried out in cellular models that poorly recapitulate the native molecular properties of human cartilaginous tissue (e.g., cell lines, induced pluripotent stem cells). Here, we set out to develop a non-viral CRISPR-Cas9, bulk-gene editing method suitable for chondrocyte populations from different cartilaginous sources.
Methods
We screened electroporation and lipid nanoparticles for ribonucleoprotein (RNP) delivery in primary polydactyly chondrocytes, and optimized RNP reagents assembly. We knocked out RELA (also known as p65), a subunit of the nuclear factor kappa B (NF-κB), in polydactyly chondrocytes and further characterized knockout (KO) cells with RT-qPCR and Western Blot. We tested RELA KO in chondrocytes from diverse cartilaginous sources and characterized their phenotype with RT-qPCR. We examined the chondrogenic potential of wild-type (WT) and KO cell pellets in presence and absence of interleukin-1β (IL-1β).
Results
We established electroporation as the optimal transfection technique for chondrocytes enhancing transfection and editing efficiency, while preserving high cell viability. We knocked out RELA with an unprecedented efficiency of ~90%, confirming lower inflammatory pathways activation upon IL-1β stimulation compared to unedited cells. Our protocol could be easily transferred to primary human chondrocytes harvested from osteoarthritis (OA) patients, human FE002 chondroprogenitor cells, bovine chondrocytes, and a human chondrocyte cell line, achieving comparable mean RELA KO editing levels using the same protocol. All KO pellets from primary human chondrocytes retained chondrogenic ability equivalent to WT cells, and additionally displayed enhanced matrix retention under inflamed conditions.
Conclusions
We showcased the applicability of our bulk gene editing method to develop effective autologous and allogeneic off-the-shelf gene therapies strategies and to enable functional genetics studies in human chondrocytes to unravel molecular mechanisms of cartilage diseases.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Gene editing
en_US
dc.subject
CRISPR-Cas9
en_US
dc.subject
Primary chondrocytes
en_US
dc.subject
NF-kappa B
en_US
dc.subject
RELA
en_US
dc.title
Streamlined, single-step non-viral CRISPR-Cas9 knockout strategy enhances gene editing efficiency in primary human chondrocyte populations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Arthritis Research & Therapy
ethz.journal.volume
26
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Arthritis Res Ther
ethz.pages.start
66
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.relation.isSupplementedBy
10.3929/ethz-b-000622382
ethz.date.deposited
2024-03-22T07:48:11Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-22T10:51:13Z
ethz.rosetta.lastUpdated
2024-03-22T10:51:13Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Streamlined,%20single-step%20non-viral%20CRISPR-Cas9%20knockout%20strategy%20enhances%20gene%20editing%20efficiency%20in%20primary%20human%20chondrocyte%20populations&rft.jtitle=Arthritis%20Research%20&%20Therapy&rft.date=2024-03-11&rft.volume=26&rft.issue=1&rft.spage=66&rft.issn=1465-9905&1465-9913&1478-6362&1478-6354&rft.au=Ponta,%20Simone&Bonato,%20Angela&Neidenbach,%20Philipp&Bruhin,%20Valentino%20F.&Laurent,%20Alexis&rft.genre=article&rft_id=info:doi/10.1186/s13075-024-03294-w&
Files in this item
Publication type
-
Journal Article [130376]