Exciton Transport in a Germanium Quantum Dot Ladder
dc.contributor.author
Hsiao, Tzu-Kan
dc.contributor.author
Cova Fariña, Pablo
dc.contributor.author
Oosterhout, Stefan D.
dc.contributor.author
Jirovec, Daniel
dc.contributor.author
Zhang, Xin
dc.contributor.author
van Diepen, Cornelis Jacobus
dc.contributor.author
Lawrie, William I.L.
dc.contributor.author
Wang, Chien-An
dc.contributor.author
Sammak, Amir
dc.contributor.author
Scappucci, Giordano
dc.contributor.author
Veldhorst, Menno
dc.contributor.author
Demler, Eugene
dc.contributor.author
Vandersypen, Lieven Mark Koenraad
dc.date.accessioned
2024-03-27T14:38:07Z
dc.date.available
2024-03-26T07:14:22Z
dc.date.available
2024-03-27T14:38:07Z
dc.date.issued
2024-01
dc.identifier.issn
2160-3308
dc.identifier.other
10.1103/PhysRevX.14.011048
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/666040
dc.identifier.doi
10.3929/ethz-b-000666040
dc.description.abstract
Quantum systems with engineered Hamiltonians can be used to study many-body physics problems to provide insights beyond the capabilities of classical computers. Semiconductor gate-defined quantum dot arrays have emerged as a versatile platform for realizing generalized Fermi-Hubbard physics, one of the richest playgrounds in condensed matter physics. In this work, we employ a germanium 4×2 quantum dot array and show that the naturally occurring long-range Coulomb interaction can lead to exciton formation and transport. We tune the quantum dot ladder into two capacitively coupled channels and exploit Coulomb drag to probe the binding of electrons and holes. Specifically, we shuttle an electron through one leg of the ladder and observe that a hole is dragged along in the second leg under the right conditions. This corresponds to a transition from single-electron transport in one leg to exciton transport along the ladder. Our work paves the way for the study of excitonic states of matter in quantum dot arrays.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Exciton Transport in a Germanium Quantum Dot Ladder
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-03-14
ethz.journal.title
Physical Review X
ethz.journal.volume
14
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Phys. rev., X
ethz.pages.start
011048
en_US
ethz.size
17 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Non-perturbative approaches to strongly correlated many-body systems
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::09753 - Demler, Eugene / Demler, Eugene
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::09753 - Demler, Eugene / Demler, Eugene
ethz.grant.agreementno
212899
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2024-03-26T07:14:23Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-27T14:38:09Z
ethz.rosetta.lastUpdated
2025-02-14T09:03:49Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Exciton%20Transport%20in%20a%20Germanium%20Quantum%20Dot%20Ladder&rft.jtitle=Physical%20Review%20X&rft.date=2024-01&rft.volume=14&rft.issue=1&rft.spage=011048&rft.issn=2160-3308&rft.au=Hsiao,%20Tzu-Kan&Cova%20Fari%C3%B1a,%20Pablo&Oosterhout,%20Stefan%20D.&Jirovec,%20Daniel&Zhang,%20Xin&rft.genre=article&rft_id=info:doi/10.1103/PhysRevX.14.011048&
Files in this item
Publication type
-
Journal Article [133665]