Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin
dc.contributor.author
Champion, Candide
dc.contributor.author
Lehner, Marc
dc.contributor.author
Smith, Albert A.
dc.contributor.author
Ferrage, Fabien
dc.contributor.author
Bolik‑Coulon, Nicolas
dc.contributor.author
Riniker, Sereina
dc.date.accessioned
2024-03-27T08:48:34Z
dc.date.available
2024-03-26T07:17:05Z
dc.date.available
2024-03-27T08:48:34Z
dc.date.issued
2024-03-14
dc.identifier.issn
0021-9606
dc.identifier.issn
1089-7690
dc.identifier.other
10.1063/5.0188416
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/666083
dc.identifier.doi
10.3929/ethz-b-000666083
dc.description.abstract
Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisecond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descriptions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Furthermore, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics by state-of-the-art biomolecular force fields.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Water model
en_US
dc.subject
Molecular dynamics
en_US
dc.subject
Computational methods
en_US
dc.subject
Nuclear magnetic resonance
en_US
dc.subject
Proteins
en_US
dc.title
Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-03-11
ethz.journal.title
The Journal of Chemical Physics
ethz.journal.volume
160
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
J. Chem. Phys.
ethz.pages.start
104105
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
FET Open – Novel ideas for radically new technologies
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.grant.agreementno
899683
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.relation.isNewVersionOf
10.3929/ethz-b-000644844
ethz.date.deposited
2024-03-26T07:17:07Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-27T08:48:39Z
ethz.rosetta.lastUpdated
2024-03-27T08:48:39Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Unraveling%20motion%20in%20proteins%20by%20combining%20NMR%20relaxometry%20and%20molecular%20dynamics%20simulations:%20A%20case%20study%20on%20ubiquitin&rft.jtitle=The%20Journal%20of%20Chemical%20Physics&rft.date=2024-03-14&rft.volume=160&rft.issue=10&rft.spage=104105&rft.issn=0021-9606&1089-7690&rft.au=Champion,%20Candide&Lehner,%20Marc&Smith,%20Albert%20A.&Ferrage,%20Fabien&Bolik%E2%80%91Coulon,%20Nicolas&rft.genre=article&rft_id=info:doi/10.1063/5.0188416&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [130591]