Framework to generate hypergraphs with community structure
dc.contributor.author
Ruggeri, Nicolò
dc.contributor.author
Battiston, Federico
dc.contributor.author
De Bacco, Caterina
dc.date.accessioned
2024-03-28T13:57:11Z
dc.date.available
2024-03-26T07:17:49Z
dc.date.available
2024-03-28T13:57:11Z
dc.date.issued
2024-03
dc.identifier.issn
1539-3755
dc.identifier.issn
1063-651X
dc.identifier.issn
1095-3787
dc.identifier.issn
1550-2376
dc.identifier.other
10.1103/PhysRevE.109.034309
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/666113
dc.identifier.doi
10.3929/ethz-b-000666113
dc.description.abstract
In recent years hypergraphs have emerged as a powerful tool to study systems with multibody interactions which cannot be trivially reduced to pairs. While highly structured methods to generate synthetic data have proved fundamental for the standardized evaluation of algorithms and the statistical study of real-world networked data, these are scarcely available in the context of hypergraphs. Here we propose a flexible and efficient framework for the generation of hypergraphs with many nodes and large hyperedges, which allows specifying general community structures and tune different local statistics. We illustrate how to use our model to sample synthetic data with desired features (assortative or disassortative communities, mixed or hard community assignments, etc.), analyze community detection algorithms, and generate hypergraphs structurally similar to real-world data. Overcoming previous limitations on the generation of synthetic hypergraphs, our work constitutes a substantial advancement in the statistical modeling of higher-order systems.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Framework to generate hypergraphs with community structure
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-03-19
ethz.journal.title
Physical Review E
ethz.journal.volume
109
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Phys. rev., E
ethz.pages.start
034309
en_US
ethz.size
18 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science
en_US
ethz.relation.isCitedBy
10.3929/ethz-b-000706643
ethz.date.deposited
2024-03-26T07:17:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-28T13:57:12Z
ethz.rosetta.lastUpdated
2024-03-28T13:57:12Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Framework%20to%20generate%20hypergraphs%20with%20community%20structure&rft.jtitle=Physical%20Review%20E&rft.date=2024-03&rft.volume=109&rft.issue=3&rft.spage=034309&rft.issn=1539-3755&1063-651X&1095-3787&1550-2376&rft.au=Ruggeri,%20Nicol%C3%B2&Battiston,%20Federico&De%20Bacco,%20Caterina&rft.genre=article&rft_id=info:doi/10.1103/PhysRevE.109.034309&
Files in this item
Publication type
-
Journal Article [132964]