Show simple item record

dc.contributor.author
Gorobets, Valentina
dc.contributor.author
Billeter, Roman
dc.contributor.author
Adelsberger, Rolf
dc.contributor.author
Kunz, Andreas
dc.contributor.editor
Ahram, Tareq
dc.contributor.editor
Taiar, Redha
dc.date.accessioned
2024-04-02T14:35:14Z
dc.date.available
2024-04-02T11:19:58Z
dc.date.available
2024-04-02T13:17:49Z
dc.date.available
2024-04-02T14:35:14Z
dc.date.issued
2024
dc.identifier.issn
2771-0718
dc.identifier.other
10.54941/ahfe1004575
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/667131
dc.identifier.doi
10.3929/ethz-b-000667131
dc.description.abstract
Our paper presents an approach to automatically detect and transcribe basic human motions in VR by means of the Methods-Time Measurement (MTM) system. MTM is a predetermined motion time system that consists of a list of predefined basic motions and the mean time values corresponding to those motions. This system is used to analyze manual workplaces. Currently, the MTM analysis is conducted manually. The working process that needs to be analyzed is video captured and further analyzed by dividing it into a sequence of basic MTM motions. There are various MTM systems that differ by their granularity level, such as MTM-1, MTM-2, MTM-UAS, etc. We propose and evaluate an approach of the automatic transcription of the MTM-1 basic motions. For our research, we use Unity software to create the virtual environment (VE) and interactions within it. Additionally, we use the HTC Vive tracking system and Sensoryx VRfree data glove that enable body- and hand-tracking. Our automatic transcription algorithm employs four decision trees that run simultaneously, each dedicated to transcribing hand, arm, body, and leg motions in real time. To assess our algorithm, we conducted a user study with 33 participants.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
AHFE
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Virtual Reality (VR)
en_US
dc.subject
MTM
en_US
dc.subject
Human motion analysis
en_US
dc.title
Automatic transcription of the Methods-Time Measurement MTM-1 motions in VR
en_US
dc.type
Conference Paper
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.book.title
Human Interaction and Emerging Technologies (IHIET-AI 2024): Artificial Intelligence and Future Applications
en_US
ethz.pages.start
250
en_US
ethz.pages.end
259
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
11th International Conference on Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications
en_US
ethz.event.location
Lausanne, Switzerland
en_US
ethz.event.date
April, 25-27, 2024
en_US
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02623 - Inst. f. Werkzeugmaschinen und Fertigung / Inst. Machine Tools and Manufacturing::08844 - Kunz, Andreas (Tit.-Prof.) / Kunz, Andreas (Tit.-Prof.)
en_US
ethz.date.deposited
2024-04-02T11:19:59Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.exportRequired
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automatic%20transcription%20of%20the%20Methods-Time%20Measurement%20MTM-1%20motions%20in%20VR&rft.date=2024&rft.spage=250&rft.epage=259&rft.issn=2771-0718&rft.au=Gorobets,%20Valentina&Billeter,%20Roman&Adelsberger,%20Rolf&Kunz,%20Andreas&rft.genre=proceeding&rft_id=info:doi/10.54941/ahfe1004575&rft.btitle=Human%20Interaction%20and%20Emerging%20Technologies%20(IHIET-AI%202024):%20Artificial%20Intelligence%20and%20Future%20Applications
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record