Show simple item record

dc.contributor.author
Rhiner, Lenny
dc.contributor.author
Lang, Sebastian
dc.contributor.author
Mayr, Josef
dc.contributor.author
Wegener, Konrad
dc.contributor.author
Bambach, Markus
dc.date.accessioned
2024-05-06T05:54:41Z
dc.date.available
2024-04-19T07:00:58Z
dc.date.available
2024-04-22T06:43:47Z
dc.date.available
2024-05-06T05:54:41Z
dc.date.issued
2024-03-14
dc.identifier.uri
http://hdl.handle.net/20.500.11850/669553
dc.identifier.doi
10.3929/ethz-b-000669553
dc.description.abstract
This paper introduces a method to compensate for thermal errors in machine tools (MT) using LSTM neural networks, with a focus on addressing prediction uncertainties. It presents the application of Monte Carlo Dropout (MC-Dropout) to estimate the uncertainty of LSTM predictions using data generated in a simulated MT environment. MC-Dropout offers a practical, computationally efficient method to allow for effective thermal error compensation without repeated on-machine measurements. Incorporating uncertainty estimates can enhance decision-making, thus allowing more autonomous machine operations and improve the selection of training data for machine learning models, leading to greater overall prediction accuracy.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
European Society for Precision Engineering and Nanotechnology
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Monte Carlo Dropout
en_US
dc.subject
Uncertainty estimation
en_US
dc.subject
LSTM
en_US
dc.subject
Thermal error prediction
en_US
dc.subject
Simulation of machine tools
en_US
dc.title
Model Uncertainty Estimation for Thermal Error Compensation in Machine Tools
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.book.title
SIG : Thermal Issues - Proceedings
en_US
ethz.pages.start
TI24106
en_US
ethz.size
2 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.event
euspen Special Interest Group Meeting: Thermal Issues
en_US
ethz.event.location
Eindhoven, Netherlands
en_US
ethz.event.date
March 13-14, 2024
en_US
ethz.publication.place
Bedfordshire
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02622 - Institut für virtuelle Produktion / Institute of Virtual Manufacturing::09706 - Bambach, Markus / Bambach, Markus
en_US
ethz.identifier.url
https://www.euspen.eu/resource/model-uncertainty-estimation-for-thermal-error-compensation-in-machine-tools-2/
ethz.date.deposited
2024-04-19T07:00:58Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-05-06T05:54:42Z
ethz.rosetta.lastUpdated
2024-05-06T05:54:42Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Model%20Uncertainty%20Estimation%20for%20Thermal%20Error%20Compensation%20in%20Machine%20Tools&rft.date=2024-03-14&rft.spage=TI24106&rft.au=Rhiner,%20Lenny&Lang,%20Sebastian&Mayr,%20Josef&Wegener,%20Konrad&Bambach,%20Markus&rft.genre=proceeding&rft.btitle=SIG%20:%20Thermal%20Issues%20-%20Proceedings
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record