Show simple item record

dc.contributor.author
Milojevic, Dejan
dc.contributor.author
Zardini, Gioele
dc.contributor.author
Elser, Miriam
dc.contributor.author
Censi, Andrea
dc.contributor.author
Frazzoli, Emilio
dc.date.accessioned
2025-04-30T06:39:53Z
dc.date.available
2024-05-09T11:51:25Z
dc.date.available
2024-05-10T09:37:12Z
dc.date.available
2024-05-27T05:48:43Z
dc.date.available
2025-03-13T12:25:00Z
dc.date.available
2025-03-13T12:48:58Z
dc.date.available
2025-04-30T06:31:55Z
dc.date.available
2025-04-30T06:39:53Z
dc.date.issued
2025
dc.identifier.issn
1552-3098
dc.identifier.issn
1042-296X
dc.identifier.issn
1941-0468
dc.identifier.other
10.1109/TRO.2025.3552347
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/672201
dc.identifier.doi
10.3929/ethz-b-000672201
dc.description.abstract
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rate (FNR) and False Positive Rate (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Mobile robot
en_US
dc.subject
Co-design
en_US
dc.subject
Sensor selection
en_US
dc.title
CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2025-03-17
ethz.journal.title
IEEE Transactions on Robotics
ethz.journal.volume
41
en_US
ethz.journal.abbreviated
IEEE Trans. Robot.
ethz.pages.start
2727
en_US
ethz.pages.end
2748
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.notes
Submitted Version was replaced by accepted version on 30.4.2025 due to publisher's policy.
en_US
ethz.identifier.wos
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02619 - Inst. Dynam. Syst. u. Regelungstechnik / Inst. Dynamic Systems and Control::09574 - Frazzoli, Emilio / Frazzoli, Emilio
en_US
ethz.date.deposited
2024-05-09T11:51:25Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2025-04-30T06:31:57Z
ethz.rosetta.lastUpdated
2025-04-30T06:31:57Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=CODEI:%20Resource-Efficient%20Task-Driven%20Co-Design%20of%20Perception%20and%20Decision%20Making%20for%20Mobile%20Robots%20Applied%20to%20Autonomous%20Vehicles&rft.jtitle=IEEE%20Transactions%20on%20Robotics&rft.date=2025&rft.volume=41&rft.spage=2727&rft.epage=2748&rft.issn=1552-3098&1042-296X&1941-0468&rft.au=Milojevic,%20Dejan&Zardini,%20Gioele&Elser,%20Miriam&Censi,%20Andrea&Frazzoli,%20Emilio&rft.genre=article&rft_id=info:doi/10.1109/TRO.2025.3552347&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record