Show simple item record

dc.contributor.author
Meyers, Marion
dc.date.accessioned
2024-06-11T16:13:32Z
dc.date.available
2024-06-11T05:22:50Z
dc.date.available
2024-06-11T16:13:32Z
dc.date.issued
2024
dc.identifier.issn
0940-5550
dc.identifier.other
10.14512/gaia.33.1.13
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/677592
dc.identifier.doi
10.3929/ethz-b-000677592
dc.description.abstract
Degrowth has emerged as a strong voice against the green growth narrative. However, it has so far left largely unshaped its vision for technology, thereby overlooking a pivotal element of the green growth narrative. This article contributes to filling this gap by analyzing the appropriateness of a digital technology, Artificial Intelligence, to a degrowth context. It does so through the angle of conviviality, a concept introduced by Ivan Illich and frequently used by degrowth scholars, which states that convivial tools should foster autonomy, creativity, and relationships among humans and with nature. This paper specifically applies Vetter's Matrix of Convivial Technology to an application of machine learning with potential environmental benefits: predictive maintenance - a proactive maintenance technique based on real-time sensor monitoring. Three key limitations to its conviviality are identified: 1. the high complexity of machine learning, 2. its environmental impacts, and 3. the size of the infrastructure it relies on. These limitations prompt critical reflections on the appropriateness of machine learning (as a part of Artificial Intelligence) to degrowth but also act as inspirations for reshaping the technology towards more conviviality.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Oekom
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Artificial intelligence
en_US
dc.subject
conviviality
en_US
dc.subject
degrowth
en_US
dc.subject
machine learning
en_US
dc.subject
technology
en_US
dc.title
Artificial Intelligence in a degrowth context: A conviviality perspective on machine learning
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
GAIA - Ecological Perspectives for Science and Society
ethz.journal.volume
33
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Gaia
ethz.pages.start
186
en_US
ethz.pages.end
192
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.status
published
en_US
ethz.date.deposited
2024-06-11T05:22:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-06-11T16:13:33Z
ethz.rosetta.lastUpdated
2024-06-11T16:13:33Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Artificial%20Intelligence%20in%20a%20degrowth%20context:%20A%20conviviality%20perspective%20on%20machine%20learning&rft.jtitle=GAIA%20-%20Ecological%20Perspectives%20for%20Science%20and%20Society&rft.date=2024&rft.volume=33&rft.issue=1&rft.spage=186&rft.epage=192&rft.issn=0940-5550&rft.au=Meyers,%20Marion&rft.genre=article&rft_id=info:doi/10.14512/gaia.33.1.13&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record