Show simple item record

dc.contributor.author
Lüchtefeld, Ines
dc.contributor.author
Pivkin, Igor V.
dc.contributor.author
Gardini, Lucia
dc.contributor.author
Zare-Eelanjegh, Elaheh
dc.contributor.author
Gabelein, Christoph
dc.contributor.author
Ihle, Stephan J.
dc.contributor.author
Reichmuth, Andreas M.
dc.contributor.author
Capitanio, Marco
dc.contributor.author
Martinac, Boris
dc.contributor.author
Zambelli, Tomaso
dc.contributor.author
Vassalli, Massimo
dc.date.accessioned
2024-06-14T15:03:58Z
dc.date.available
2024-06-11T05:22:51Z
dc.date.available
2024-06-11T14:29:33Z
dc.date.available
2024-06-14T15:03:58Z
dc.date.issued
2024-06
dc.identifier.issn
1548-7105
dc.identifier.issn
1548-7091
dc.identifier.other
10.1038/s41592-024-02277-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/677597
dc.identifier.doi
10.3929/ethz-b-000677597
dc.description.abstract
The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Atomic force microscopy
en_US
dc.subject
Fluorescence imaging
en_US
dc.subject
Ion channels
en_US
dc.subject
Membrane biophysics
en_US
dc.title
Dissecting cell membrane tension dynamics and its effect on Piezo1-mediated cellular mechanosensitivity using force-controlled nanopipettes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2024-05-27
ethz.journal.title
Nature Methods
ethz.journal.volume
21
en_US
ethz.journal.issue
6
en_US
ethz.journal.abbreviated
Nat Methods
ethz.pages.start
1063
en_US
ethz.pages.end
1073
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Unravel Principles Of Self-Organization In Injured Tissue
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.grant.agreementno
202301
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Sinergia
ethz.date.deposited
2024-06-11T05:22:53Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-06-14T15:03:59Z
ethz.rosetta.lastUpdated
2024-06-14T15:03:59Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Dissecting%20cell%20membrane%20tension%20dynamics%20and%20its%20effect%20on%20Piezo1-mediated%20cellular%20mechanosensitivity%20using%20force-controlled%20nanopipettes&rft.jtitle=Nature%20Methods&rft.date=2024-06&rft.volume=21&rft.issue=6&rft.spage=1063&rft.epage=1073&rft.issn=1548-7105&1548-7091&rft.au=L%C3%BCchtefeld,%20Ines&Pivkin,%20Igor%20V.&Gardini,%20Lucia&Zare-Eelanjegh,%20Elaheh&Gabelein,%20Christoph&rft.genre=article&rft_id=info:doi/10.1038/s41592-024-02277-8&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record