Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism
dc.contributor.author
Sunnåker, Mikael
dc.contributor.author
Zamora-Sillero, Elias
dc.contributor.author
Dechant, Reinhard
dc.contributor.author
Ludwig, Christina
dc.contributor.author
Busetto, Alberto Giovanni
dc.contributor.author
Wagner, Andreas
dc.contributor.author
Stelling, Jörg
dc.date.accessioned
2021-10-25T13:48:04Z
dc.date.available
2017-06-10T17:53:01Z
dc.date.available
2021-10-25T13:48:04Z
dc.date.issued
2013-05-28
dc.identifier.issn
1945-0877
dc.identifier.issn
1937-9145
dc.identifier.issn
1525-8882
dc.identifier.other
10.1126/scisignal.2003621
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/67853
dc.description.abstract
Predictive dynamical models are critical for the analysis of complex biological systems. However, methods to systematically develop and discriminate among systems biology models are still lacking. We describe a computational method that incorporates all hypothetical mechanisms about the architecture of a biological system into a single model and automatically generates a set of simpler models compatible with observational data. As a proof of principle, we analyzed the dynamic control of the transcription factor Msn2 in Saccharomyces cerevisiae, specifically the short-term mechanisms mediating the cells’ recovery after release from starvation stress. Our method determined that 12 of 192 possible models were compatible with available Msn2 localization data. Iterations between model predictions and rationally designed phosphoproteomics and imaging experiments identified a single-circuit topology with a relative probability of 99% among the 192 models. Model analysis revealed that the coupling of dynamic phenomena in Msn2 phosphorylation and transport could lead to efficient stress response signaling by establishing a rate-of-change sensor. Similar principles could apply to mammalian stress response pathways. Systematic construction of dynamic models may yield detailed insight into nonobvious molecular mechanisms.
en_US
dc.language.iso
en
en_US
dc.publisher
AAAS
dc.title
Automatic Generation of Predictive Dynamic Models Reveals Nuclear Phosphorylation as the Key Msn2 Control Mechanism
en_US
dc.type
Journal Article
ethz.journal.title
Science Signaling
ethz.journal.volume
6
en_US
ethz.journal.issue
277
en_US
ethz.journal.abbreviated
Sci. signal.
ethz.pages.start
ra41
en_US
ethz.size
14 p.
en_US
ethz.identifier.wos
ethz.publication.place
Washington, DC
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03699 - Stelling, Jörg / Stelling, Jörg
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02517 - Institut für Biochemie / Institute of Biochemistry (IBC)::03595 - Peter, Matthias / Peter, Matthias
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03699 - Stelling, Jörg / Stelling, Jörg
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02517 - Institut für Biochemie / Institute of Biochemistry (IBC)::03595 - Peter, Matthias / Peter, Matthias
ethz.date.deposited
2017-06-10T17:54:51Z
ethz.source
ECIT
ethz.identifier.importid
imp593650ad2c1bd57644
ethz.ecitpid
pub:107929
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-15T01:17:51Z
ethz.rosetta.lastUpdated
2024-02-02T15:11:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Automatic%20Generation%20of%20Predictive%20Dynamic%20Models%20Reveals%20Nuclear%20Phosphorylation%20as%20the%20Key%20Msn2%20Control%20Mechanism&rft.jtitle=Science%20Signaling&rft.date=2013-05-28&rft.volume=6&rft.issue=277&rft.spage=ra41&rft.issn=1945-0877&1937-9145&1525-8882&rft.au=Sunn%C3%A5ker,%20Mikael&Zamora-Sillero,%20Elias&Dechant,%20Reinhard&Ludwig,%20Christina&Busetto,%20Alberto%20Giovanni&rft.genre=article&rft_id=info:doi/10.1126/scisignal.2003621&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Journal Article [133013]