An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
dc.contributor.author
Devers, Emanuel A.
dc.contributor.author
Teply, Julia
dc.contributor.author
Reinert, Armin
dc.contributor.author
Gaude, Nicole
dc.contributor.author
Krajinski, Franziska
dc.date.accessioned
2019-01-24T11:51:06Z
dc.date.available
2017-06-10T18:10:29Z
dc.date.available
2019-01-24T11:51:06Z
dc.date.issued
2013-05-16
dc.identifier.issn
1471-2229
dc.identifier.other
10.1186/1471-2229-13-82
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/68258
dc.identifier.doi
10.3929/ethz-b-000068258
dc.description.abstract
Background
Legumes have the unique capacity to undergo two important root endosymbioses: the root nodule symbiosis and the arbuscular mycorrhizal symbiosis. Medicago truncatula is widely used to unravel the functions of genes during these root symbioses. Here we describe the development of an artificial microRNA (amiR)-mediated gene silencing system for M. truncatula roots.
Results
The endogenous microRNA (miR) mtr-miR159b was selected as a backbone molecule for driving amiR expression. Heterologous expression of mtr-miR159b-amiR constructs in tobacco showed that the backbone is functional and mediates an efficient gene silencing. amiR-mediated silencing of a visible marker was also effective after root transformation of M. truncatula constitutively expressing the visible marker. Most importantly, we applied the novel amiR system to shed light on the function of a putative transcription factor, MtErf1, which was strongly induced in arbuscule-containing cells during mycorrhizal symbiosis. MtPt4 promoter driven amiR-silencing led to strongly decreased transcript levels and deformed, non-fully truncated arbuscules indicating that MtErf1 is required for arbuscule development.
Conclusions
The endogenous amiR system demonstrated here presents a novel and highly efficient tool to unravel gene functions during root endosymbioses.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
BioMed Central
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.title
An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 2.0 Generic
ethz.journal.title
BMC Plant Biology
ethz.journal.volume
13
en_US
ethz.journal.abbreviated
BMC plant biol.
ethz.pages.start
82
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2017-06-10T18:11:43Z
ethz.source
ECIT
ethz.identifier.importid
imp593650b46172283445
ethz.ecitpid
pub:108461
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-13T12:09:24Z
ethz.rosetta.lastUpdated
2024-02-02T07:02:11Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20endogenous%20artificial%20microRNA%20system%20for%20unraveling%20the%20function%20of%20root%20endosymbioses%20related%20genes%20in%20Medicago%20truncatula&rft.jtitle=BMC%20Plant%20Biology&rft.date=2013-05-16&rft.volume=13&rft.spage=82&rft.issn=1471-2229&rft.au=Devers,%20Emanuel%20A.&Teply,%20Julia&Reinert,%20Armin&Gaude,%20Nicole&Krajinski,%20Franziska&rft.genre=article&rft_id=info:doi/10.1186/1471-2229-13-82&
Files in this item
Publication type
-
Journal Article [130591]