An approach on how to combine object recognition methods
dc.contributor.author
Wong, Gladys
dc.date.accessioned
2017-09-19T05:53:28Z
dc.date.available
2017-06-10T18:21:16Z
dc.date.available
2017-09-19T05:53:28Z
dc.date.issued
1990-06
dc.identifier.uri
http://hdl.handle.net/20.500.11850/68467
dc.identifier.doi
10.3929/ethz-a-000545883
dc.description.abstract
Object recognition methods are usually suited to specific classes of features. Nonetheless, real world objects seldom contain only one single class of features. The premise of this paper is that it would be possible to recognize more objects if several differing recognition methods were used independently on identical scene objects and their results were combined; furthermore, a combination would help to improve the quality of the recognition. First, the original scene image (which may contain overlapping objects) is preprocessed several times; every method uses its preprocessed image as input in its recognition process. Every method delivers then a quality value for every object to reflect the result of the match. In a subsequent step, each object is weighted by taking into account the given scene, the object, and the class of features peculiar to the method. This weight gives the method's suitability to characterize the particular object. The weights and quality values are then combined to produce a final list of objects sorted according to the probability that they occur in the scene. We illustrate our system combining two methods for object recognition. We then present some results and discuss the future direction of our research.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
Departement Informatik, ETH Zürich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
COMPUTER VISION + SCENE UNDERSTANDING (ARTIFICIAL INTELLIGENCE)
en_US
dc.subject
PATTERN RECOGNITION (ARTIFICIAL INTELLIGENCE)
en_US
dc.subject
MUSTERERKENNUNG (KÜNSTLICHE INTELLIGENZ)
en_US
dc.subject
COMPUTERVISION (KÜNSTLICHE INTELLIGENZ)
en_US
dc.title
An approach on how to combine object recognition methods
en_US
dc.type
Report
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.journal.title
ETH, Eidgenössische Technische Hochschule Zürich, Departement Informatik, Institut für Informationssysteme
ethz.journal.volume
134
en_US
ethz.size
40 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.identifier.nebis
000545883
ethz.publication.place
Zürich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science
en_US
ethz.date.deposited
2017-06-10T18:22:05Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp593650b8ecf0b18268
ethz.identifier.importid
imp593669ca4c83653578
ethz.ecolpid
eth:7104
ethz.ecitpid
pub:108681
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-19T00:03:55Z
ethz.rosetta.lastUpdated
2020-02-15T07:22:32Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=An%20approach%20on%20how%20to%20combine%20object%20recognition%20methods&rft.jtitle=ETH,%20Eidgen%C3%B6ssische%20Technische%20Hochschule%20Z%C3%BCrich,%20Departement%20Informatik,%20Institut%20f%C3%BCr%20Informationssysteme&rft.date=1990-06&rft.volume=134&rft.au=Wong,%20Gladys&rft.genre=report&
Files in this item
Publication type
-
Report [6866]