Contrastive Learning for Multi-Object Tracking with Transformers
dc.contributor.author
De Plaen, Pierre-François
dc.contributor.author
Marinello, Nicola
dc.contributor.author
Proesmans, Marc
dc.contributor.author
Tuytelaars, Tinne
dc.contributor.author
Van Gool, Luc
dc.date.accessioned
2024-07-30T07:13:01Z
dc.date.available
2024-07-27T07:02:33Z
dc.date.available
2024-07-30T07:13:01Z
dc.date.issued
2024
dc.identifier.isbn
979-8-3503-1892-0
en_US
dc.identifier.isbn
979-8-3503-1893-7
en_US
dc.identifier.other
10.1109/WACV57701.2024.00672
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/685490
dc.description.abstract
The DEtection TRansformer (DETR) opened new possibilities for object detection by modeling it as a translation task: converting image features into object-level representations. Previous works typically add expensive modules to DETR to perform Multi-Object Tracking (MOT), resulting in more complicated architectures. We instead show how DETR can be turned into a MOT model by employing an instance-level contrastive loss, a revised sampling strategy and a lightweight assignment method. Our training scheme learns object appearances while preserving detection capabilities and with little overhead. Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset and is comparable to existing transformer-based methods on the MOT17 dataset.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Algorithms
en_US
dc.subject
Video recognition and understanding
en_US
dc.subject
Image recognition and understanding
en_US
dc.subject
Applications
en_US
dc.subject
Autonomous Driving
en_US
dc.title
Contrastive Learning for Multi-Object Tracking with Transformers
en_US
dc.type
Conference Paper
dc.date.published
2024-04-09
ethz.book.title
2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
en_US
ethz.pages.start
6853
en_US
ethz.pages.end
6863
en_US
ethz.event
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)
en_US
ethz.event.location
Waikoloa, HI, USA
en_US
ethz.event.date
January 3-8, 2024
en_US
ethz.identifier.scopus
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2024-07-27T07:02:35Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-07-30T07:13:02Z
ethz.rosetta.lastUpdated
2024-07-30T07:13:02Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Contrastive%20Learning%20for%20Multi-Object%20Tracking%20with%20Transformers&rft.date=2024&rft.spage=6853&rft.epage=6863&rft.au=De%20Plaen,%20Pierre-Fran%C3%A7ois&Marinello,%20Nicola&Proesmans,%20Marc&Tuytelaars,%20Tinne&Van%20Gool,%20Luc&rft.isbn=979-8-3503-1892-0&979-8-3503-1893-7&rft.genre=proceeding&rft_id=info:doi/10.1109/WACV57701.2024.00672&rft.btitle=2024%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35260]