Discussion of: Treelets—An adaptive multi-scale basis for sparse unordered data
dc.contributor.author
Meinshausen, Nicolai
dc.contributor.author
Bühlmann, Peter
dc.date.accessioned
2022-08-23T11:15:46Z
dc.date.available
2017-06-08T17:34:06Z
dc.date.available
2022-08-23T11:15:46Z
dc.date.issued
2008-06
dc.identifier.issn
1932-6157
dc.identifier.issn
1941-7330
dc.identifier.other
10.1214/08-AOAS137C
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/6862
dc.description.abstract
We congratulate Lee, Nadler and Wasserman (henceforth LNW) on a very interesting paper on new methodology and supporting theory. Treelets seem to tackle two important problems of modern data analysis at once. For datasets with many variables, treelets give powerful predictions even if variables are highly correlated and redundant. Maybe more importantly, interpretation of the results is intuitive. Useful insights about relevant groups of variables can be gained.
Our comments and questions include: (i) Could the success of treelets be replicated by a combination of hierarchical clustering and PCA? (ii) When choosing a suitable basis, treelets seem to be largely an unsupervised method. Could the results be even more interpretable and powerful if treelets would take into account some supervised response variable? (iii) Interpretability of the result hinges on the sparsity of the final basis. Do we expect that the selected groups of variables will always be sufficiently small to be amenable for interpretation?
en_US
dc.language.iso
en
en_US
dc.publisher
Institute of Mathematical Statistics
en_US
dc.title
Discussion of: Treelets—An adaptive multi-scale basis for sparse unordered data
en_US
dc.type
Other Journal Item
dc.date.published
2008-07-03
ethz.journal.title
The Annals of Applied Statistics
ethz.journal.volume
2
en_US
ethz.journal.issue
2
en_US
ethz.pages.start
478
en_US
ethz.pages.end
481
en_US
ethz.publication.place
Cleveland, OH
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02537 - Seminar für Statistik (SfS) / Seminar for Statistics (SfS)::03502 - Bühlmann, Peter L. / Bühlmann, Peter L.
ethz.date.deposited
2017-06-08T17:34:11Z
ethz.source
ECIT
ethz.identifier.importid
imp59364ba91659c25077
ethz.ecitpid
pub:17325
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2017-07-18T18:46:01Z
ethz.rosetta.lastUpdated
2024-02-02T17:53:49Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Discussion%20of:%20Treelets%E2%80%94An%20adaptive%20multi-scale%20basis%20for%20sparse%20unordered%20data&rft.jtitle=The%20Annals%20of%20Applied%20Statistics&rft.date=2008-06&rft.volume=2&rft.issue=2&rft.spage=478&rft.epage=481&rft.issn=1932-6157&1941-7330&rft.au=Meinshausen,%20Nicolai&B%C3%BChlmann,%20Peter&rft.genre=unknown&rft_id=info:doi/10.1214/08-AOAS137C&
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Other Journal Item [5605]