TextMesh: Generation of Realistic 3D Meshes From Text Prompts
dc.contributor.author
Tsalicoglou, Christina
dc.contributor.author
Manhardt, Fabian
dc.contributor.author
Tonioni, Alessio
dc.contributor.author
Niemeyer, Michael
dc.contributor.author
Tombari, Federico
dc.date.accessioned
2024-08-02T08:57:24Z
dc.date.available
2024-08-02T06:43:48Z
dc.date.available
2024-08-02T08:57:24Z
dc.date.issued
2024
dc.identifier.isbn
979-8-3503-6245-9
en_US
dc.identifier.isbn
979-8-3503-6246-6
en_US
dc.identifier.issn
2378-3826
dc.identifier.other
10.1109/3DV62453.2024.00154
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/686708
dc.description.abstract
The ability to generate highly realistic 2D images from mere text prompts has recently made huge progress in terms of speed and quality, thanks to the advent of image diffusion models. Naturally, the question arises if this can be also achieved in the generation of 3D content from such text prompts. To this end, a new line of methods recently emerged trying to harness diffusion models, trained on 2D images, for supervision of 3D model generation using view dependent prompts. While achieving impressive results, these methods, however, have two major drawbacks. First, rather than commonly used 3D meshes, they instead generate neural radiance fields (NeRFs), making them impractical for most real applications. Second, these approaches tend to produce over-saturated models, giving the output a cartoonish looking effect. Therefore, in this work we propose a novel method for generation of highly realistic-looking 3D meshes. To this end, we extend NeRF to employ an SDF backbone, leading to improved 3D mesh extraction. In addition, we propose a novel way to finetune the mesh texture, removing the effect of high saturation and improving the details of the output 3D mesh.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
TextMesh: Generation of Realistic 3D Meshes From Text Prompts
en_US
dc.type
Conference Paper
dc.date.published
2024-06-12
ethz.book.title
2024 International Conference on 3D Vision (3DV)
en_US
ethz.pages.start
1554
en_US
ethz.pages.end
1563
en_US
ethz.event
11th International Conference in 3D Vision (3DV 2024)
en_US
ethz.event.location
Davos, Switzerland
en_US
ethz.event.date
March 18-21, 2024
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2024-08-02T06:43:51Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2024-08-02T08:57:25Z
ethz.rosetta.lastUpdated
2024-08-02T08:57:25Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=TextMesh:%20Generation%20of%20Realistic%203D%20Meshes%20From%20Text%20Prompts&rft.date=2024&rft.spage=1554&rft.epage=1563&rft.issn=2378-3826&rft.au=Tsalicoglou,%20Christina&Manhardt,%20Fabian&Tonioni,%20Alessio&Niemeyer,%20Michael&Tombari,%20Federico&rft.isbn=979-8-3503-6245-9&979-8-3503-6246-6&rft.genre=proceeding&rft_id=info:doi/10.1109/3DV62453.2024.00154&rft.btitle=2024%20International%20Conference%20on%203D%20Vision%20(3DV)
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35263]